Time and Resource Critical
Virtualization

For the RIPE NCC box

LUIGI CORSELLO
RIPE NCC, HOGESCHOOL VAN AMSTERDAM

JANUARY 2013

Virtualization for the RIPE NCC box Abstract

ABSTRACT

The Gll department and the Science Division at RIPE NCC would like to know if Atlas Anchor Nodes
part of RIPE ATLAS could be hosted together with other Linux services in the same hardware system,
provisionally named RIPE NCC box, by implementing virtualization technology.

Such technology should comply with at least three important requirements:

* Accurate Timekeeping with a precision relevant to the ATLAS anchor project.

* System and Network Resource Separation and Availability in case of load.

* Scalable Manageability: for Gll to be able to remotely maintain multiple nodes.
Three virtualization candidates have been considered:

* VMware vSphere Hypervisor 5.1 (ESXi): a commercial product of VMware Inc, freely
usable in certain cases; offers full virtualization technology, is already used at RIPE NCC.

* QOpen Virtuozzo (OpenVZ): open source, backed by Parallels, Inc; OS based virtualization
similar to FreeBSD jails already in use at the Gll department.

* KVM: open source supported by RedHat Inc; integrated in Linux and fully customizable;
offers full virtualization with paravirtualization.

Extensive tests and benchmarks have been run, in a five months period between 2012 and 2013:
* System benchmarks through the Phoronix Test Suite and Unixbench.
* Network tests using the packet generation tool iperf.
* Combined Network and System tests, using iperf and the stress load generator.

The research brought to the following conclusions:

* The ESXi Hypervisor offers very good scalability and acceptable resource separation also in
the network. However, high memory load interferes with the network stack and with an
otherwise relatively stable timekeeping: an issue that needs further investigation.

* The OpenVZ solution offers good scalability, acceptable system resource separation with
mediocre Disk and Memory performance, and acceptable time stability but it fails on
network resource separation. Using separate network interfaces may overcome that.

e KVM was not stable under a paravirtualized clock source, fails the timekeeping
requirement during intensive Disk 1/O, and also fails network resource separation.
Scalability also scores mediocre with KVM, that in general seemed not mature enough.

Additionally, hosting production services on virtualization host of KVM or OpenVZ is not advisable.

There is no clear winner or optimal solution that meets all requirements of this research.
Conditional to legal confirmation about its license, and required further investigation on the memory
subsystem: best choice could be VMware. Second choice for a quick implementation is OpenVZ.

A side result of the research is that relying on NTP for critical timekeeping using shared network
resources may fail the strict requirement of accuracy, under heavy load. With or without virtualization.
A review of the tolerable margins of "accurate timekeeping" for the RIPE NCC box is recommended.

This document describes the project Virtualization for the RIPE NCC box and its outcome, including
research activities and technical highlights. An extensive report attached contains detailed results.

Version 2 Page 1

Virtualization for the RIPE NCC box Table of Contents

1. INTRODUCTION curususscssssssssssesss sssssssssesssssssssss sessssssssssesssssss s sssssssssssssssnsnsses 4
O T U (0 ¥ L4 RN 4
1.2, DOCUMENT BUILDUP....corvuueeeersiusessessussssssssssssesessesssssssssassssssssasssesssssansssssssasssssssssssssssssssssssssssnssssssssssssssssnssssssssnnesees 4

1.2.1. ASSOCIATED DOCUMENTS....couueeersseesssseessssessssesssssesssssessssessssssessssesssssesssssssssssesssssesssssesssssesssssesssssesssssesssanes 5
1.3, RESEARCH ETHICS ceourveruseeerissersisssessusesessssssssasssssasesessssesessosssssansssssanssessssssssssssssssssssssssssessssesessssssssasessssanasesssnassssssssses 5
1.4, ACKNOWLEDGEMENTS..oorvuuseeesseusessessussesessusssesessesssssssssassssssssasssessssssssssssssssssssssssssssssessssssssssssssssssssssssssssssnsssssssssnnesees 6

2. VIRTUALIZATION FOR THE RIPE NCC BOX....c.cocounmmmmmsmsmmsssassssns 7
2.1, SECTION INTRODUCTION..covueeverreuseeeessssssssessasssessssssssesssssassssssssassssssssssssssssssssssssssssnssssssasssesssssssesssssssasssssssssssssannnss 7
2.2, THE RIPE NCC c.ouooveoeeereesesersiosseseessassesessasssessssssssssssssasssessssasssassessssssnnss 7

2.2.1. THE SCIENCE DIVISION ccouuieruseeeuseessseesssseessssessssesssssesssssesssssesssssesssssesssssssssssessssesssssesssssesssssessssesssssessssneses 7
2.2.2. THE RIPE ATLAS PROJECT weuteeuueeruseesseessssesssssesssssesssasesssssessssssssssssssssesssssssssssssssssesssssesssssessssesssssesssaeses 9
2.2.3. RIPE ATLAS ANCHOR NODES ...orurueerueeesseesssessssesssssesssssesssssessssssssssssssssssssssssssssesssssesssssessssesssssesssaseses 9
2.3, PROJECT SCOPE .ooouooeeeveeseeeriessssessissessssissssssssssssssssssisssssssssssssssssassssssssssssssssssssssssssssnssssssssssssssssnesssssansssssssnns 10
2.3.1. TECHNICAL REQUIREMENTS....coouturumessseesssseessssessssesssssssssesssssesssssesssssessssesssssssssssessssssssssssssssesssssesssanes 11
2.3.2. QUESTIONS TO ANSWERcurureerssesssseessssesssssesssssessssssssssssssesssssesssssesssssesssssesssssesssssassssssssssssssssesssssesssanes 11
2.3.3. LIMITATIONS woouueeuuseessseesssessssesssssesssssesssssesssssesssseessssesssssssesssesssssesssssesssssesssssesssssesssssessssesssssssssssesssssesssanes 12
2.4, PROJECT PHASES....corvuseeeesuussssessusssssessasssssssssssssssssssssssssssassssssssassssssssssss s sessssssssssssssssssssssssssssssssnssssssssnessssssnsssssssnns 12
2.5, THE PREPARATORY PHASEoorvoeeeerisseeersissssessissesessisssssssssssssssssisssssssssssssssssssssssssssssssssssnsssssssanssssssenns 14
2.5.1. INITIAL INTERVIEWS c.outuuuueessseeessseesssseesssesssssesssssesssssssssssssssesssssesssssesssssesssssssssssssssssessssssssssssssssesssssesssanes 14
2.5.2. CANDIDATE SERVICES...cctuueetuseesuseesssseesssesssssesssssesssssssssssssssesssssesssssesssssesssssesssssesssssesssssssssssessssesssssesssanes 14
2.5.3. PROJECT INITIATION DOCUMENT ..uevueemsermseerseessesessessssesssssssssssssesssssssssssssessssessssesssesssssssssessasssssssssseeeas 15
2.6, THE THEORETICAL RESEARCH PHASEoueteeeosererrissseeeriisssesessisssssssissssssssisssssssisssssssssssssssanssssssanns 16
2.6.1. VIRTUALIZATION CANDIDATES ...uvurueessseesssseesssessssessssssssssssssssesssssesssssessssesssssesssssessssssssssssssssesssssesssanes 16
2.6.2. MONITORING AND TEST METRICS....cuuueeesueessseesssesssssesssssssssesssssesssssesssssssssssssssssessssssssssssssssesssssesssanes 17
2.6.3. TEST TYPES..ccuuueeruseeessseesssessssesssssesssssesssssesssssesssssessssesssssssssssesssssesssssesssssesssssesssssesssssessssssssssssssssesssssesssanes 18
2.7. THE PRACTICAL RESEARCH PHASEoovveterrissesersisssessssissssssssisssanssssssanns 19
2.7.1. TEST INFRASTRUCTURE (THE POC LAB) ..tturtertereestersetsectsenssesssesssssssesssessssssssssss st sesssssssssssesasesans 19
2.7.2. TEST EXECUTION ..otteteeuueeessseessseessssesssssesssssessssesssssssssssesssssesssssesssssesssssesssssesssssessssssssssssssssesssssesssanes 20

3. THE TECHNICAL SIDE ...t ssssssss s sssssss s sssssssss s sssssssss s ssassssssssssasassss s 22
3.1, SECTION INTRODUCTION ..corvurreverseusessessasssesessasssssessesssssssssssssssessasssesssssssssssssssssessssssnssssssssssssssssssssssssssssssssssassssesss 22
3.2. THE CHOSEN VIRTUALIZATION TECHNOLOGIES..cv...evereusseeersisssssssssssssssssassssssssssssssssssssssssssssssssassssssssassssesss 22

3.2.1. VMWARE VSPHERE HYPERVISOR 5.1 (ESXI)euiuorierreeeereeereeseesseesseesseessesssesssessssssesssssesssssssesssssssesans 22
3.2.2. OPENVZ (OPEN VIRTUOZZO) coeeureeureesreesseesresssesssesssessssssssssesssesssssssesssssssesssssssessssssssssasssasssasssssssssssesasssans 23
3.2.3. KVM (KERNEL BASED VIRTUALIZATION) ..outuureeueeseessesseessessseessesssesssssssesssessssssssssssssssssasssssssssssesasesans 24
3.2.4. THE EXCLUDED VIRTUALIZATION TECHNOLOGIES ..couveruseerusrsssseesssessssesssssssssssssssssesssssessssesssssesssanes 26
3.3, SETTING UP THE POC LAB coovuocerreoseeersussesessisssssessissssssssassssssssassssssssssssssssssssnssssssssnsssssssnasssssssssssssssssssssssansssesss 27
3.3.1. POC LAB HARDWARE AND VIRTUALIZED GUESTS occuuuveruseerusrsssseesssessssssssssssssssesssssssssssessssesssssesssanes 27
3.3.2. NETWORK CONNECTIVITY wevuureeeuseeessseesssseesssseessssessssessssessssesssssesssssesssssessssesssssesssssessssssssssssssssesssssesssanes 28
3.3.3. SYSTEM DEPLOYMENT AND THE DRAC CHALLENGE w.couveuurermeesseessssesssssesssssssssssssssssssssesssssesssanes 29

Version 2 Page 2

Virtualization for the RIPE NCC box Table of Contents

5.

3.3.4. VMWARE VSPHERE 5.1 AND DELL R320 HARDWARE......ccsscrmeurerreersesressessessessssssssessssssssssssessssasesnes 30
3.3.5. OPERATING SYSTEM SETUP...csvrreureereermesseessssessesssesssssssssessssssssssssessssasssnes
3.3.6. NTP CONFIGURATION ...cureururereureneuressaseseasessssessasessasessssessasessssessasessasessasessasens
3.3.7. 'THE KVM-CLOCK PARAVIRTUALIZED CLOCKSOURCE
3.4. SYSTEM AND NETWORK RESOURCES MONITORINGceueereereereareereseareaseasesseasessessessessessssssssssssssssssssssssssssssssses
3.4.1. MONITORING LIMITATIONS .cucureurureueuresesresesresssressasessssessssessssessssessssessasessssessssessssessssessssessssessssessssessssessanes
3.5, MEASURING TIMEKEEPING STABILITY couvvvvvveosseessessssssssssssssssssssssssasssssssssssssssssssanssssssssssssssasssssssssssssssassssnsssnssans
3.5.1. TIMEKEEPING QUIRKS AND POLLING INTERVAL LIMITATIONovvvermeurerrrermessesseessessessesesssssesssssseanes 36
3.5.2. SHARED NETWORK LIMITATION AND USE OF SEPARATE INTERFACES. ...cccveurerreemeueessesesessssneaes 38
3.6. MEASURING RESOURCE SEPARATION ...ccoeeeeereeaeesenseaseseasesessessssssasesssasessessessessesssssesssssessssssssssssssssssssssssssssssssses 39
3.6.1. TESTING THE VIRTUALIZATION HOST ..cuiureiereereceseesseeseessesssesssessses e ssessanes 39
3.6.2. SYSTEM BENCHMARKS AND LOAD GENERATION ...ccotureiureruresuresasessasesssessssessssessssessssessssessssensssessanes 40
3.6.3. INETWORK TESTS w.ereurureueereearesearesssessssessssessssessssessasessssessssessssessssessssessssessssessssesssstsssstsssnessssesssnssssnesssnsssanes 41
3.6.4. COMBINED TESTS ..oeuturerureeureeuresssessssessssessssessssessssessssessssessasessssessssessssessssessssessssenssstssssesssseasssssssnesssnensanes 43
3.7. AUTOMATED TEST SCHEDULING, DATA FETCHING AND GRAPH GENERATIONovueereereereererreenerssssesssssesnees 43
OUTCOME AND ADVICE ...iiiiisiisissmssmssssnssnssssssssssssmss s ssssssssssassassnssnssassanss 45

4.1. SECTION SUMMARY
4.2, RESEARCH QUTCOME ...cotoeeeeeeeesiessssssssssssesssssssesssssssssssessesssasessssssssesssssessessessessessessessessessssssssssssssssssssssssssssssssses

4.3, ACCURATE TIMEKEEPING....o...eversuussseessusssesessasssssessesssssssssssssssssasssssssssssssssssssssssssssnssssssssnsasssssssssssssssssssssssassssesss
4.3.1. VMWARE VSPHERE HYPERVISOR (ESXI)
4.3.2. OPENVZ.ooeeererreeesseesssesssesssssesssssssssssssssssssssns
4.3.3. KVMuereeersesssseesssessssessss
4.3.4. THE CRITICALITY OF NTP TIMEKEEPING

4.4. RESOURCE SEPARATION
4.4.1. VMWARE VSPHERE HYPERVISOR (ESXI) ocutturiureeecuectrenseesseessesssesssessssssssssssesssssssessssssssssssssssssssnes

O §)) AV A/ /7
3 TR (Y. T
4.4.4., THE INTERFERENCE BETWEEN MEMORY AND NETWORK IN HYPERVISORS
4.5, SCALABLE MANAGEABILITY couvovevvseesevsrseesissssissssssssssssesssssssssssssssssssssssassssssssssssassssassasssssssssssssssssssssssssasssssssassssassssanss 55
4.5.1. VMWARE VSPHERE HYPERVISOR....ccssuseeisssrsissssssssssssssssssssssssssssssssssssssasssssssssssssssssessassssssssssssssssass 55
T 0)2 26 VA /28 56
G T (7. 56
4.5.4., THE MIXED BLESSINGS OF A VIRTUALIZATION HOST evreirverirrersrsesrsessssessssessssessssessssessssessssesssssssseens 57
4.6, ADDITIONAL REQUIREMENTS wovereevsrsemsssserssssesssssesssssssssssssssssssssassssssssssssassssssesssssasssassssssassssssassssssassssssasssssans 58
4.6.1. "SCALABLE UPDATES" (DIFFERENT KERNELS ON EACH GUEST)..ccurtumeereeeesseesseessesssesssesssesssssssesnees 58
4.6.2. COMPLIANCE WITH EXISTING RIPE NCC SERVICES...coureerrererrersrsessssessssessssessssessssesssesssssssssesssssssenns 58
4.7, OQUTCOME AND FINAL ADVICE ueiueesesseseosesseesioseeseosesseosessesessesessesessessessessessessessessessessessessesssssessssssssssssssssssssssssss 59
4.7.1. SHORT TERM ACTION ...ooeevrrerernee
4.7.2. LONG TERM PERSPECTIVE
4.8, ADDITIONAL REMARKS AND SIDE INOTES ooevvevereoseeseoseosesseosessesemsesessesessessessessensessessessessesssssesssssssssssssssssssssssses 62
4.8.1. CPU HYPER-THREADING AND TURBO BOOST FEATURES ...cvurererresrresssenssressssessssessssessssessssesssssassenns 62
4.8.2. ABOUT THE VSPHERE HYPERVISOR LICENSE ..ovcuiurisersessrsersssessssessssessssessssessssssssessssssssssssssssssssssssesassenas 63
4.8.3. ABOUT THE HARDWARE SPECIFICATION ..cuvuiureressesessssensssessssessssesssssssssssssssssssessssssssssssssssssessssssassesassenas 63
4.9, OPEN QUESTIONS eeeeververssressrsssvssssssvsssssesssssssssssssssssassssssassssssssssassssssassssssasssassasssassesssssesssassssssassssssassssssassssssasssssans 64
4.10. VIRTUALIZATION PROTOTYPE AND FUTURE OF THE POC LAB.ucueoviveovioseoseosiisevsiiseosssisesssssssssssssesssssssssns 65
BIBLIOGRAPHY vvutrsasssssssssssssasssessssssssssssssssasssssssssssssassssssssssssssssssssnsssssssssssssasssessssssssssssssssnsssssssssssnsnsssanssnss 66

Version 2 Page 3

Virtualization for the RIPE NCC box 1. Introduction

1. INTRODUCTION

1.1. MOTIVE

This is the final report of a graduation project that | carried out for RIPE NCC in Amsterdam
between September 2012 and January 2013: Time and Resource Critical Virtualization for the RIPE NCC
box.

My name is Luigi Corsello, part time student at the Hogeschool van Amsterdam since 2009 and ICT
professional since 1999. | have senior experience in System and Network Engineering and junior
experience as Project Manager, played at a number of Italian, Dutch and American companies across a
period of 11 years.

This project report will focus on three aspects: research activities and outcome; technical
implementation details; planning and project management aiding the delivery in a relatively short
timeframe.

Next to delivering the results of the research, my aim is to demonstrate my maturity as IT
professional and graduating student to set up and manage a business process; employ all necessary
technical and non-technical means, deliver a product that meets the requirements.

1.2. DOCUMENT BuUiLDUP

Beyond the introductory section, this paper is split into four more sections and is meant for
different kinds of audience that can selectively choose to read the sections that more concern their
interest:

* Section 2 reports about the research: what to deliver; the phases of the project; what work
was done and which choices were made.

* Section 3 presents the technical implementation details: the infrastructure setup,
technical solutions used and so forth.

* Section 4 focuses on the outcome of the research, containing brief results highlights,
conclusions, side notes and the advice given.

Version 2 Page 4

Virtualization for the RIPE NCC box 1. Introduction

* Section 5 (HvA version only) contains some project management details and some personal
reflections about the process that brought the project to completion. How it came into
existence and how it was managed, some lessons learned and some points to improve.

Each section tries to follow a chronological order from its own different perspective: from the first
activities and technical highlights down to the final delivery.

Document and attachments are written in English as agreed with all parts involved. RIPE NCC
requires all company related papers to be written in English.

1.2.1. ASSOCIATED DOCUMENTS

* Attachment 1 — Time and Resource critical Virtualization for the RIPE NCC box — Results-
Attachments publishing the results of tests and benchmarks run during this research. It
contains result tables, comparative graphs, result graphs and more. This document is available
on request from the RIPE NCC.

* Attachment 2 (HvA version only) — Virtualization for the RIPE NCC box: Project Initiation
Documentation (PID): contains project management related items: a Business Case and a Plan
of Approach for the project inclusive of planning, activities, risk evaluation.

1.3. RESEARCH ETHICS

| have executed this research autonomously, while keeping my customer informed on a regular
basis. Excluding remarks and requests from the customer, quality control was also in my hands.

Lacking external quality control on the very many items treated, no guarantee can be given that
no errors have been made. However, the maximum care has been taken to prevent them or
eventually correct them to my best effort.

Research ethics and absolute openness have been a central point throughout the project. All tests
and benchmarks were executed taking care that they could not be affected by external interferences
or technical glitches. When that happened, like by the first attempts of running automated tests,
entire test sets have been repeated as many times as necessary until a consistent and reliable result
was obtained. Exceptions and uncontrolled changes have been avoided for as much as possible.

The care for quality came to surface for example when testing in advance the effective
functionality of system benchmarks, or double checking dubious results through multiple sources of
information, or by making sure to always have two monitoring resources for the most important
metrics, for confirmation.

Version 2 Page 5

Virtualization for the RIPE NCC box 1. Introduction

Raw data results, however at the moment may not be in a format that can be easily understood by
the general public, can be made available for control and verification. On request they can be
published in a clearer way or orderly packaged and stored.

1.4. ACKNOWLEDGEMENTS

This document is dedicated to my father and my family in Italy who supported me for many years
to my graduation despite all odds, even from the distance when | decided to move to the Netherlands.

A mention goes the personnel of the Media, Creation and Information department of the
Hogeschool van Amsterdam devoted to part time courses and to my tutors, for their dedication and
for offering me that bit of extra faith in succeeding, when needed.

Many thanks to the RIPE NCC with its unmistakable family feeling and research oriented attitude,
for trusting my skills and offering me the chance to complete my studies. Special thanks for the sincere
availability of all colleagues who supported my work.

Version 2 Page 6

Virtualization for the RIPE NCC box 2. The Research

2. VIRTUALIZATION FOR THE RIPE NCC BOX

2.1. SECTION INTRODUCTION

This section describes the activities of the project Time and Resource Critical Virtualization for the
RIPE NCC box sponsored by the Gll department at the Science Division of RIPE NCC.

The section begins with a short background on the company and department where the project
took place, with an overview of their services involved in the project. Scope and requirements are
then explained. A sketch of the planning and then all project phases are described. The most
important research phase, split into a theoretical and a practical step fills the rest of the section.

2.2. THERIPENCC

The RIPE NCC, as its website currently states: "is one of five Regional Internet Registries (RIRs)
providing Internet resource allocations, registration services and coordination activities that support
the operation of the Internet globally." Among its core services there are registration and assignment
of Internet resources, IP addresses and AS numbers, plus a number of services for its members.
Functional to its activities is the RIPE database holding all registration information for Internet
resources in its service region. The RIPE NCC also manages the infrastructure of K-ROOT servers, one
of the sets of servers that are on top of the Domain Name Resolution (DNS) tree, essential for the
functioning of the Internet as we know it.

The NCC is a non-profit, neutral organization that was officially born in 1992 as the operative arm
of RIPE (Réseaux IP Européens) a body established in 1989 to promote cooperation between network
operators in the European region. The RIPE has also set up a long established decisional process where
its community can influence the operational policies made. The RIPE Meetings, held at different
locations throughout the year, always attract much attention from operators and policymakers.

2.2.1. THE SCIENCE DIVISION

The RIPE NCC historically had a research-oriented mentality, an attitude that remained intact
across the years. In 2012, the Science Division department is busy with research, development and
administration of a set of services for its member's community and for the Internet user base.

Version 2 Page 7

Virtualization for the RIPE NCC box 2. The Research

Internet Measurements have been an important area of interest of the department but not the
only one. Here follows a shortlist of services of the Science Division possibly relevant to this project:

* RIPEstat, a web tool to collect and report information about different Internet resources by
guerying several data sources managed by the RIPE NCC (among which the RIPE Database).

* The K-ROOT DNS servers infrastructure already mentioned. The infrastructure is made of
several anycast servers spread over different locations around the world. The use of anycast
addressing makes it possible that every user attempting to contact a K-ROOT DNS server is
always automatically routed to the nearest node.

* DNSMON, a service used to monitor the status of the Top Level Domain DNS servers of some
countries (ccTLD) participating at the project and also the K-ROOT DNS servers, using software
probes installed at different Internet locations. The probes are now hosted on Test Traffic
Measurement (TTM) nodes but are being integrated into the RIPE ATLAS project (see below).

* RIS, or Routing Information Service, a route collector service well established for more than a
decade, collecting Internet routing information through the BGP protocol from its nodes
hosted at Internet Exchanges around the world. The information collected is stored and
elaborated to provide statistics about IP address prefixes, AS numbers and their status on the
global routing. Most information provided by RIS is reported through RIPEstat as well.

e TTM, or Test Traffic Measurements project, another long-standing service that can measure
delay, packet loss, delay variation (jitter) and bandwidth between TTM nodes hosted by
participating members. For precise bidirectional measurements the TTM nodes, based on the
FreeBSD OS, are connected to a GPS antenna: GPS satellites provide excellent and consistent
time accuracy across all nodes. They are also accessible for time synchronization as high
precision "stratum 1" NTP servers. The TTM infrastructure is in the process of being phased
out in favor of the more recent RIPE ATLAS project.

Most of the services mentioned are offered to RIPE NCC members (and to the general public as
well in some cases) through the main website www.ripe.net. The Science Division also maintains the
website labs.ripe.net for reports, findings and new ideas.

Head of the Science Division is Daniel Karrenberg, one of the minds behind RIPE who has had a
role in the introduction of the Internet in Europe and is deeply involved with the Internet community.

The Science Division at RIPE NCC has two technical departments: Global Information Infrastructure
(Gll) is responsible for system and network engineering activities and for 24/7 availability of both
remote nodes and local infrastructure backend, hosted in datacenters; Research and Development
(R&D) improves existing services and develops new ones; A third department, "Measurements
Community Building", is busy with project management and in the liaison between the operative
departments and the community members.

The GIl department, sponsor of this project, tightly cooperates with the Operations Departments
external to the Science Division and responsible for the IT infrastructure of the entire RIPE NCC,

including common services, physical and virtual servers and datacenter management.

Version 2 Page 8

Virtualization for the RIPE NCC box 2. The Research

2.2.2. THE RIPE ATLAS PROJECT

The RIPE ATLAS project, further referred to as Atlas, is the youngest and at the time of writing the
fastest growing of the services of the Science Division. Its aim is to build a large network of internet
measurements done by tiny embedded hardware probes, easily deployable at any location with
internet connectivity and an USB power source.

Hardware probes autonomously schedule and perform a series of standard measurements using
ICMP and UDP based tools (ping, traceroute); they can also be setup to perform extended
measurements like using HTTP and DNS protocols. The K-ROOT server infrastructure is among the
measurements targets of the Atlas probes.

Image 1: RIPE ATLAS Probe v.2

The information produced by Atlas probes is collected by RIPE NCC and analyzed to produce
certain statistics, for example to observe how natural or political events affect the Internet
infrastructure or to keep an eye on the "health of the Internet". The resulting measurements are
publicly available. Probe hosts also have limited possibilities to configure their own probe(s) to
perform specific tests, for example towards all probes of a specific group.

As of 2013, the Atlas project is moving out of its prototype phase. It can already count on more
than 2000 active probes for now mostly in the European region and in other western countries while
an equivalent number of probes are being distributed around the globe.

2.2.3. RIPE ATLAS ANCHOR NODES

Since Quarter 3, 2012, the Science Division has introduced the idea of Atlas Anchor Nodes, which
brings us closer to the scope of this project. The current infrastructure of Atlas probes can produce
statistics at a mostly global level: the next step would be having regional measurement targets to
observe traffic patterns at a more fine-grained local level.

To reach that target Anchor Nodes, hosted at relevant Internet locations like at the network edge
of service providers, could work both as big-size software probes and measurement targets, linking (or
anchoring) a set of probes to a specific region. A software probe is a software package that can be
installed on a system to perform the same functions as the hardware probes.

In addition to the standard Atlas measurements managed by the Science Division, RIPE NCC
members who host an anchor, could then program their probes to serve specific purposes, like

Version 2 Page 9

Virtualization for the RIPE NCC box 2. The Research

measuring the performance of their own networks centered around the anchor node, or sending
alerts in case something is wrong (for example in case certain targets become unreachable).

As of December 2012, the Gll and R&D departments are running a pilot phase involving a limited
number of participants hosting the first Atlas Anchor nodes.

Gll engineers drafted standard hardware specifications for an Anchor Node for all participating
hosts to order, rack mount and connect to their networks. After that, Gll can remotely take control of
the nodes and install operating system and all services needed on them, to manage them remotely.

The operating system used into Atlas Anchor Nodes (and at RIPE NCC in general) is the CentOS
Linux distribution in its latest version, currently 6.3.

The pilot phase is proving useful for technical matters related to RIPE ATLAS measurements, like
testing functionality and resource needs of the software probe, using an Anchor Node as a
measurements target, inserting the Anchor Nodes into the Atlas data processing backend.

The pilot is also helping to settle political and administrative matters like the definitive hardware
specifications to propose, handling support for the nodes, the process of registration of Anchor hosts
and so forth.

The current plan is to gradually extend the number of hosts taking part to the pilot starting in
Quarter 1, 2013, then gradually add all desired functionality and features needed until Anchor Nodes
can be made fully operative and part of RIPE ATLAS public infrastructure.

2.3. PROJECT SCOPE

As we have seen, a number of different services offered by the RIPE NCC are based on remotely
hosted server nodes, examples being Atlas Anchor nodes or K-ROOT DNS servers.

To consolidate certain services, single hardware nodes could host multiple services running
independently from each other: that could be achieved by using virtualization technology.

The initial hardware specification for Anchor nodes was made with this idea in mind: a relatively
powerful and standardized piece of hardware hosted at remote locations to serve as Atlas Anchor
node but also host other present and future services. Such a node could be named RIPE NCC box.

Each service has its own specific requirements, for example: Anchor nodes require time accuracy
to perform reliable measurements and each K-ROOT server instance should always count on CPU
processing power and network bandwidth available, because potentially serving a large user base.

| have been asked by the manager of the Gll department, Romeo Zwart, to research a number of
virtualization technologies and verify if any of them could consistently comply with certain specific
requirements in order to run certain services of RIPE NCC.

Version 2 Page 10

Virtualization for the RIPE NCC box 2. The Research

The research would take the Atlas Anchor project as a starting point and the hardware
specification formulated for the Atlas Anchor pilot phase as reference hardware specification to use

for testing.

2.3.1. TECHNICAL REQUIREMENTS

The primary technical requirements, already set at the beginning of this project and then carefully
agreed upon in a preparatory phase of the project are specified in a Project Initiation Document. Here

follows an excerpt:

* Accurate time: the solution implemented must offer reliable time management:
accurate timekeeping in the order of milliseconds is required; a more precise
order of magnitude can be defined during the research.

* Resource separation and availability: service Containers or Virtual Machines
should never interfere with each other in particular in case of CPU, network and
disk 1/0 load and in terms of security. Allocated system resources must remain
available to the Virtual Machines at any time.

* Scalable manageability: the RIPE NCC box and its services must be deployable
and maintainable in a scalable, possibly semi-automated way.

* (Optional) scalable updates: it should be possible to perform system updates (like
kernel updates) limited to one service platform without affecting the other
services on a node.

* (Optional) compatibility: a node should support existing services without the
need of a code overhaul. Exceptions like building pre-packaged versions of those
services, for the sake of deployment on a node, are possible.

2.3.2. QUESTIONS TO ANSWER

During a preparatory phase of the project, the requirements and primary scope of this project
have been discussed with a number of interested parties in a series of initial interviews. Those have
led to one main question this project attempts to answer. From the Project Initiation Document:

"Can a form of virtualization be implemented on a network node to reliably host
certain Linux based services that require accurate time, resource separation and
scalable manageability?"

Version 2 Page 11

Virtualization for the RIPE NCC box 2. The Research

The main question has led to a set of secondary questions to be answered. These formed the
basis for the continuation of this project and the research associated to it:

* Who shall be involved in the development of services for the nodes and in
deployment and management of the nodes themselves?

* Which (model of) network services could be hosted on a node?

* What are technical and scalability requirements a node must comply with?
* Which virtualization technologies could meet the requirements?

* How to tune a virtualization technology to meet the requirements?

* What could be non-technical requirements for a node, and how to comply with
them?

The first three questions, already discussed at the beginning of the project, were answered in the
preparatory phase (see next paragraphs). The two questions highlighted are the core questions of the
project. Non technical requirements have to do with hardware and licensing requirements.

2.3.3. LIMITATIONS

As important as the main scope of the project were its limitations or constraints, also fixed into
the Project Initiation Document. Here follows a summary:

* No service implementation: this project would test virtualization technologies against the
requirements, not implement RIPE NCC services into virtual machines.

* Compliance to current practices: this project would attempt to comply and tune the research
and its findings to the current practices at the Gll department.

* No policy handling: policies and agreements between the RIPE NCC and its members for the
implementation of virtualization on Atlas Anchor Nodes were out of scope.

* No remote deployment, no implementation: this project would not implement the advised

virtualization technology beyond its own test infrastructure.

The limitation also set the main scope of this project to remain unchanged during its entire
duration, also in case the plans of the Science Division would change.

2.4. PROJECT PHASES

This project has seen a Preparatory phase and a Research Phase. Those were freely based on the
Ten Steps Plan for an advising research defined in ref [16] in the Bibliography. The preparatory phase
ended when the PID was completed; this document concludes the research phase.

Version 2 Page 12

Virtualization for the RIPE NCC box 2. The Research

Table 1 shows a short summary of the main phases, their respective activities and their planned
and effective duration. Despite the efforts theoretical and practical research had to happen mostly in
parallel; also, the practical phase required more activities than originally planned with an additional
stage of testing to be executed, causing some delay in the final delivery.

ACTIVITY BEGIN END EFFECTIVE END
Preparatory Phase 3/Sep/2012 10/0ct/2012
Initial Interviews 3/Sep/2012 18/Sep/2012
Analysis and Aggregation 10/Sep/2012 18/Sep/2012
Activities Planning (PID) 19/Sep/2012 28/Sep/2012
Agreement on Planning 1/0ct/2012 10/0ct/2012
Research Phase 1/0ct/2012 31/12/2012
Theoretical Research 1/0ct/2012 29/0ct/2012 12/Dec/2012
Practical Research 11/0ct/2012 10/Dec/2012 21/Dec/2012
Conclusions and Advice 10/Dec/2012 31/12/2012 (est)15/1/2012

Table 1: Schematic project planning, with the effective end dates in the last column.

Version 2

Page 13

Virtualization for the RIPE NCC box 2. The Research

2.5. THE PREPARATORY PHASE

Building up the background of the project, acquiring the necessary knowledge about RIPE NCC and
all preparations and agreements for the research phase happened during the preparatory phase.

2.5.1. INITIAL INTERVIEWS

This project was initially set up with two initial interviews with the manager Gll, held before
September 2012, to agree about the main lines explained earlier in this document.

The other initial interviews | held with:

* Philip Homburg, Atlas probe programmer at the R&D department, who contributed with ideas
for time monitoring and provided the main requirements for both an Atlas probe and a
measurement target for RIPE ATLAS.

* Sean McAvoy, and John Bond, senior engineers at the Gll department, as interested parties for
Atlas Anchor Nodes, who provided information about infrastructure and policies at Gll and
about the existing services of the Science Division.

Informal talks took place with Anthony Anthony, Atlas probe programmer, and Anand Buddhdev,
senior Gll engineer involved with the K-ROOT DNS server infrastructure. Of course more informal

information exchange took place occasionally throughout the entire project.

Tight relations were kept with the engineers of the RIPE NCC OPS (Operations) department,
especially for preparing and later setting up the POC infrastructure, to respect the internal policies of
the company. The OPS department also provided information concerning the VMware infrastructure
that they manage, under which a number of RIPE NCC backend resources are hosted.

2.5.2. CANDIDATE SERVICES

The initial interviews made clear which services could be hosted on the RIPE NCC box. As by the
original agreements with the GIl manager, the RIPE NCC box could only host Linux-based services of
the Science Division, thus excluding the RIS project at this stage.

The most important initial candidate services came out to be:

* An Atlas Anchor node, initially functioning as software probe and anchor target, with
potentially more functionalities in the future; R&D programmers remained responsible for
developing software for an Anchor Nodes and add them to the RIPE ATLAS backend while GI/
engineers would take care of OS setup and maintenance of the nodes.

Version 2 Page 14

Virtualization for the RIPE NCC box 2. The Research

* Aninstance of K-ROOT DNS server, entirely managed by Gll engineers.

* A DNSMON probe, soon to be integrated into the RIPE ATLAS framework by the R&D
department.

Basic technical requirements for the services to host are worth mentioning in this section: each
service would need at least the latest CentOS Linux distribution (that would be version 6.3) two
processor cores, two or four Gbytes RAM. One limitation for an Atlas Software Probe to work was to
have no more than one network interface active at a time, however that limitation might have been
overcome by newer releases of the software probe package.

2.5.3. PROJECT INITIATION DOCUMENT

A big amount of information was collected during the initial interviews. That information was
sorted and analyzed to form the basis of activities and planning in the Project Initiation Document.
That document was further discussed and agreed upon with the manager Gll and the supervisor for
the Hogeschool van Amsterdam on October 10 2012, after which the core research activities of this
project could be kicked off.

Version 2 Page 15

Virtualization for the RIPE NCC box 2. The Research

2.6. THE THEORETICAL RESEARCH PHASE

In the original planning the research part of this project was to be split into a theoretical and a
practical phase. The practical phase would merely serve to perform tests and benchmarks planned
during the theoretical phase. In reality, the two phases did happen in parallel, with the technical
infrastructure for test execution and data collection being perfected as a consequence of the practical
activities.

For the sake of clarity, the two research phases will be described separately. This paragraph will
sketch an overview of the plans for tests and benchmarks.

The theoretical research had two scopes:
* Determine the virtualization technologies candidates to test.

* Design a test infrastructure and some methods to check the compliance of the virtualization
candidates to the given requirements.

2.6.1. VIRTUALIZATION CANDIDATES

Choosing the virtualization candidates to test was a difficult challenge. It formed a research into a
research for which many online resources were consulted. For the final choice, influenced by one of
the technical requirements (manageability), the initial interviews were taken into consideration
together with certain specific factors:

* Affinity with the RIPE NCC: does RIPE NCC already uses or has used a certain technology? Is
there in-house experience and into which departments?

* Compliance with the current Gll infrastructure: Can the Gll department directly implement a
certain technology or does that require relevant changes?

* Cost: is a certain technology free to use for the RIPE NCC box? Are there technical or license

restrictions? Are there peculiar implementation challenges?

* Differentiation: one last scope was to test technically different technologies, to increase the
chance to find a match with the requirements.

Three candidates came out of the choice: those are summarized in Table 2; the next section has
more details about the chosen candidates. For proper reporting of the results, virtualization
candidates are listed in the order they were implemented in the test lab, i.e. their order in Table 2 and
further in this document had no specific significance for the outcome of the research.

Version 2 Page 16

Virtualization for the RIPE NCC box

2. The Research

Table 2: Virtualization Candidates

VIRTUALIZATION TECHNOLOGY LICENSING HIGHLIGHTS
VMware vSphere Full Commercial; | Already in use at the OPS department
Hypervisor 5.1 (Hypervisor) free At loast)) CILT
(ESXi) Virtualization download; east one sem.or engz'nee.r a as
o experience with it
. . limited free
Special build for s , o . .
usability. Full virtualization, a Virtual Machine
Poweredge R320 mil it hsical
provided by Dell offers similar facilities as a physica
Support system
OpenVZ Container (0S GPL v2 Similar to "FreeBSD jails" already in
, level) use at GII; further no in-house
Using vzkernel Virtualizati . ‘th O vz
X86_64 version: irtualization experience with Open
2.6.32- Near native access to system
042stab065.3 resources, in particular to a time
source
KVM Full Differs per Highly tunable, favorite by system
On CentOS 6.3 Vlrtuallhz‘atlon, component: engineers. Lzrrfzted in-house
) "virtio" GPL, GPL v2, experience.
Linux Kernel))
) paravirtualized LGPL, LGPL - -
x86_64 version: . Deeply integrated into the standard
disk and V2. .
2.6.32-279.11.1 i Linux Kernel.
network drivers
CentOS 6.3 gemu- Paravirtualized elements should offer
kvm version: advantages in term of access to
0.12.1.2-2.295 system resources for timekeeping and
performance.

2.6.2. MONITORING AND TEST METRICS

The research had two types of metrics: network tests were mostly evaluated through empirical

observation of monitoring graphs of specific resources.

In addition to the monitoring graphs system benchmarks produced concrete values and indexed
scores to better weight the differences. System benchmarks results could also allow the comparison
between different technologies in some cases: an extra result offered by the research.

The monitoring was carefully set up on a separate host so that for each of the most important
metrics there would be at least 2 monitoring tools collecting the same statistics, to always have a
control value in case of uncertainty.

An important role in the research was played by the concept of baselines. Baselines are the zero
value result or graphs for a specific metric drawn during a period of idle or no load, on each of the

Version 2 Page 17

Virtualization for the RIPE NCC box 2. The Research

systems tested. Later comparison of the baselines with the results under specific load could give a
figure of the impact of that load compared to when the system was idle.

For example, some fluctuations in the accuracy of time caused by certain tests were minimal (in
the order of hundreds of microseconds) but could be observed by comparing to the time baseline.
Producing a timekeeping baseline of the physical virtualization hosts could help to mark the difference
in the timekeeping between that physical host and the virtualized guests running on it.

The concept of baselines could also be applied to benchmark results: for example by
benchmarking first a standalone guest (producing a "baseline") and then two guests simultaneously,
to evaluate the difference in performance and in particular resource separation.

Especially important for this research were the metrics for time, network latency and system
resources (CPU, etc). described in more detail in Section 3 of this document.

2.6.3. TEST TYPES

One of the scopes of this project was to check resource separation.

Appropriate tools where necessary to first generate simultaneous load in a predictable and
repeatable way but also produce measurable results, to assess how the performance of the systems
was affected. That concept came out to be especially critical when testing network resources.

The tests executed used a combination of freely available tools: benchmarking packages and
network and system load generators specifically engineered for this research. Perfecting and
improving the automatic execution of tests and benchmarks required concrete efforts.

Three types of tests were planned and executed on both virtualization guests and Linux hosts:

* System benchmarks for CPU, DISK and Memory, would measure resource separation
under simultaneous load but also allow performance comparison in certain cases.

* Network tests would produce UDP and TCP network flows and then observe their impact
in many different use cases, through monitoring graphs.

* Combined tests, involving both System and Network for load generation, would allow to
observe the interaction between network and system load and confirm previous findings.

The execution of tests has known two stages, the second stage only involving two remaining
virtualization technologies that had passed the first stage. During the second stage, a reduced set of
tests was executed in a much improved and better-automated setup.

Section 3 has a better description of tests and benchmarks implemented. All the details about
test and benchmarking use cases are described in the Results-Attachments document.

Version 2 Page 18

Virtualization for the RIPE NCC box 2. The Research

2.7. THEPRACTICAL RESEARCH PHASE

The practical research phase can be roughly identified with the period during which tests and

benchmarks were run and their results were collected, after the test infrastructure was made
available.

2.7.1. TEST INFRASTRUCTURE (THE POC LAB)

The design of the test infrastructure or POC Lab started very early in the project to make sure the

resources needed could be allocated in time for testing and benchmarking. The POC Lab was installed

in a local workshop at the premises of RIPE NCC.

Like other items of this research, the test infrastructure was designed with number of specific

factors in mind. All those were considered in the practical implementation:

Parallelism: due to the limited time available, toe POC Lab should allow the execution of as

many tests and benchmarks as possible in parallel on all three virtualization candidates.

Consistency: for the test results to be acceptable, the setup should remain consistent across all
virtualization candidates implemented in the POC Lab.

o All virtualized guests should share for as much as possible the same virtual resource
assignment, operating system packages, system and services configurations and so on.
Also to easily perform batch operations remotely on all of them.

o For virtualization candidates running on top of a Linux host (OpenVZ and KVM): all
hosts should also share the same system configuration and setup, like the guests did.

o The hardware setup (HW specifications, BIOS setup, cabling, etc) should be
consistently equal (this rule had one relevant exception, see next section).

The entire POC Lab should retain the same setup until all tests and benchmarks of a stage
were executed. This was meant to avoid that the reinstall of a system, the replacement of a
network cable or a change in the monitoring software could taint an entire set of results.

Default Settings as a rule. To respect the scalability requirement, all virtualization candidates
were implemented for as much as possible using their standard, recommended, or default
settings, without extensive tweaking. Only necessary configuration changes that the Gll could
potentially apply on remote RIPE NCC boxes on a large scale were allowed and recorded.

Realism. The most important factor: the POC Lab should produce a situation for as much as
possible similar to the realistic setup of a RIPE NCC box deployed at remote locations. In other
words: the systems running on the virtualization guests should be similar to a standard system
installed by GIl through their standard practices. Also the resources assigned to virtualized
guests should reflect the basic requirements for the candidate services (paragraph 2.5.2).

Version 2 Page 19

Virtualization for the RIPE NCC box 2. The Research

The POC Lab, completed before the first system tests of 19 November 2012, consisted of three
servers running one virtualization candidate each. Every host had two identical virtual guests.

One central node was used to monitor and gather statistics for the entire infrastructure and as a
controller to start automated test on schedule. Another node, installed like a Test Traffic
Measurement box, provided a precise NTP time reference based on GPS, and was only meant to be
used for time monitoring.

More details about the POC Lab are available in Section 3.

2.7.2. TEST EXECUTION

The execution of tests and benchmarks has been performed in two stages, the second stage added
when more data was needed to draw clearer conclusions.

* In stage 1, all virtualization candidates were tested for basic compliance to the technical
requirements. In case of system benchmarks, the extent of the tests in this stage did not
produce comparable results among virtualization candidates but just within them, as needed
to check the resource separation requirement. At the end of this stage one candidate was
excluded from the research for clear lack of compliance to at least one requirement.

* During stage 2, run in December 2012, certain tests and benchmarks were re-executed after
controlled changes to monitoring and resource assignment. Benchmark results produced
during this stage also allowed performance comparison among the remaining virtualization
candidates.

The status of testing activities has been shared within the Science Division at RIPE NCC. An
extended webpage with all the scheduling has been published and kept up-to-date until all tests were
executed. Some input from R&D developers and Gll engineers helped to pinpoint better test practices
and "most asked" results and led to the running of the second stage of tests.

Table 3 shows a short overview of the schedule of tests and benchmarks. Result tables of system
benchmarks and comparative and monitoring graphs also for network and combined tests are shown
in the Results-Attachments document associated to this report.

System benchmarks have mostly been executed in parallel on all candidates. Network and
combined tests, on the contrary, had to be executed sequentially on one virtualization candidate at a
time: the generation of network packet flows always required a client side and a server side and the
hardware resources were insufficient to run multiple tests in parallel.

To facilitate the execution of several rounds of consecutive tests, running network and combined
tests was fully automated through shell scripts: the automated scheduling was controlled by a central

server.

Version 2 Page 20

Virtualization for the RIPE NCC box 2. The Research

A log of the tests executed on schedule was saved in a text file. That file was later parsed to
automatically fetch or generate all relevant graphs for each specific test in the specific timeframe
when it was run and for the specific hosts on which it was run.

Thanks to the automation, all graphs for each test executed could be saved into a generated tree
of directories that was published on an internal web server. This automation made available
thousands of graphs with little effort and greatly helped the analysis phase.

From the second half of December 2012, test results started to be analyzed to be published and
produce the conclusion presented by this document. Section 4 covers the outcome of the research.

TEST TYPE STAGE BEGIN END
System Tests one 19/Nov/2012 22/Nov/2012
Network Tests one 26/Nov/2012 6/Dec/2012
Combined Tests one 5/Dec/2012 6/Dec/2012
System Tests* two 8/Dec/2012 10/Dec/2012
Network Tests two 11/Dec/2012 13/Dec/2012+
Combined Tests** two 12/Dec/2012 13/Dec/2012+
A few additional system benchmarks were run for confirmation on 21/Dec/2012.
*using "reduced" benchmarking suites, see Section 3
** using pure load generation instead of system benchmarks, see Section 3
+ with the exception of some confirmation tests executed until January 2013.

Table 3: Overview Execution periods of Tests and Benchmarks

Version 2 Page 21

Virtualization for the RIPE NCC box 3. The Technical Side

3. THE TECHNICAL SIDE

3.1. SECTION INTRODUCTION

This section is devoted to the technical side of this project . It extends Section 2 and contains more
in-depth implementation details and information about solutions used throughout the research.

This project required a broad range of System and Network engineering skills centered on Linux
systems. The most important activities were:

* setting up the test infrastructure (the "POC lab") with the virtualization candidates;
* setting up system monitoring and timekeeping monitoring inclusive of a TTM node;
* technical troubleshooting and remote administration;

* choosing, building and testing system and network benchmarks and test tools;

* automated execution of benchmarks and tests;

* automated fetching of monitoring graphs and results.

3.2. THE CHOSEN VIRTUALIZATION TECHNOLOGIES

This paragraph provides more insight on the virtualization technologies chosen as candidates for
testing based on specific factors, as explained in Paragraph 2.6.1.

3.2.1. VMWARE VSPHERE HYPERVISOR 5.1 (ESXI)

The VMware vSphere Hypervisor 5.1 (ESXi) is a commercial
product at the core of the range offered by VMware, Inc. Freely
available to download and licensed for limited use, it could be used
in production but only under determinate legal conditions.

The ESXi Hypervisor provides a full virtualization solution. Virtual Machines offer similar resources
as a physical system, taking away potential service compatibility issues: the vast majority of system
components is abstracted on top of the Hypervisor itself. The high level of abstraction may cause
issues in terms of the lack of access to a "real" time source and possibly also in terms of performance.

Version 2 Page 22

Virtualization for the RIPE NCC box 3. The Technical Side

A negative aspect of the ESXi solution could be that its graphical management interface is based
on the Windows platform, not in use at Gll and not very scalable: the free vSphere Hypervisor does

not offer a solution to aggregate multiple nodes into one single management interface.

The use of the graphical interface can be reduced to a near zero by freely available command line
solutions based on Linux:

* the vMA or vSphere Management Assistant (ref [23] in the Bibliography) a separate virtual
machine devoted to management purposes.

* the vCLI package (ref [22]) a set of command line tools that can run on any local or remote
Linux system to perform management activities.

VMware offers the possibility to automate remote deployment of ESXi on remote hardware, for
example from NFS shared storage, in a way remembering the kickstart of a Linux distribution (ref [16]).
The Hypervisor can be protected from unauthorized access by a new firewall feature (ref[19]).

Once the ESXi Hypervisor is installed, pre-existing virtual machines templates saved with the
standard OVF format (Open Virtualization Format) can be imported on a running Hypervisor eventually
using a command line tool named ovftool (ref [15]).

Default resources available when creating a new virtual machine can accommodate by default
many needs without any additional setup. Certain configuration changes can happen without the
guests needing a reboot.

Much documentation and support articles for VMware products are freely available online from
www.vmware.org. The high level of adoption of VMware products increases the amount of

information available on the Net. The free ESXi is not entitled for support, however support packages
can be acquired from VMware.

The ESXi also offers a limited interface to third party management tools through libvirt, a
framework for virtualization supporting the remote management of many different technologies.

The OPS (Operations) department at the RIPE NCC does already manage a virtualization
infrastructure based on the vSphere family of products and on different versions of the VMware
Hypervisors. In the GIl department, at least one senior engineer has experience with VMware
products.

3.2.2. OPENVZ (OPEN VIRTUOZZO)

OpenVZ (or Open Virtuozzo) is an open source product developed through a community effort and
available through the GPL v2 (General Public License). It is sponsored by Parallels Inc (that does not
offer support for the open source product) and used as a basis for one of their commercial products.
The GPL licensing scheme leaves much freedom to use and tweak the product as needed, while the
presence of a sponsoring entity might form an indirect warranty about the continued life of OpenVZ.

Version 2 Page 23

Virtualization for the RIPE NCC box 3. The Technical Side

Still a "virtualization" solution, OpenVZ is technologically very different from most hypervisors
present on the market. Similar to FreeBSD jails, OpenVZ isolates an entire system into "containers"
(from there the term "container virtualization"). Each container has its own resources assigned, like

memory space, number of CPU cores and network interfaces, that are

&Openvz bound to those of the host system. Files and resources of a container

Linux Containers (same as process handles) are all openly available and shared with

those of the host system, for example it is easy to kill a process running into a container from the
virtualization host: a handy feature for some system engineers, a serious security flaw for others.

The host system of OpenVZ runs a customized version of the Linux kernel, named vzkernel,
maintained and made available by OpenVZ itself with download and setup instructions for the most
known Linux distributions. In particular the OpenVZ kernel and tools packages are integrated within
Debian Linux but are not included in RedHat based Linux distributions. RedHat or CentOS users just
need to add the OpenVZ repository to their system. This research tested the 64bit stable vzkernel
version: 2.6.32-042stab065.3.

Lacking a full hypervisor, container virtualization (also known as OS level virtualization) cannot
abstract all system resources therefore a container hosted by a Linux system may only run Linux, but
not necessarily the same Linux distribution of the host.

The positive aspect of system containers is that they can supposedly enjoy near native access to
the host system resources like disk I/O, memory and CPU. In fact, the vzkernel does perform some
control of a number of resources that are not made directly available to the containers. One example
is time: a container is bound to the timekeeping of its host and should not perform timekeeping on its
own nor is permitted to do that by default, to avoid containers and host to compete while updating
the same time resources.

OpenVZ is fully based on Linux and very easily manageable by a set of own command line tools. It
can also be interfaced by third party management tools by using libvirt, however the standard version
of libvirt provided by CentOS 6.3 does not seems to be compiled with support for OpenVZ. Extensive
and clear documentation for the entire platform is to be found in the OpenVZ wiki: wiki.openvz.org.

Deployment of a container happens in a very simple way through OS templates containing an
entire system. Using the vzct/ tool it is possible to import and run a template into a container in less
than ten commands. OS templates for standard distributions are available but customized OS

templates can be made for easy and scalable deployment of different services on multiple nodes.

There is no direct experience with this specific technology in the GIlI department; however, the
FreeBSD jail solution, based on a similar concept, has been used.

3.2.3. KVM (KERNEL BASED VIRTUALIZATION)

KVM or Kernel-based Virtualization does not form an entire virtualization solution but is made of
different components. At the core of KVM there are two modules included in the standard Linux

Kernel since version 2.6.20. Those modules provides access to a series of resources on which a virtual

Version 2 Page 24

Virtualization for the RIPE NCC box 3. The Technical Side

machine can be run by certain user-level programs, by either using the CPU extensions for
virtualization offered by most modern processors or through a software CPU emulator. The software
named gemu is used to run the Virtual Machines using the KVM interface.

KVM offers full virtualization through the kernel modules directly hooked to ‘
the system. Its closeness to the inner kernel structures allows using Z}\KV iVi
paravirtualized drivers for example for 1/O and networking. With
paravirtualization, the abstraction layer between virtualized and real resources is much thinner,
potentially guaranteeing better performance. The feature that made KVM a good candidate was the
presence of a paravirtualized time driver named "kvm-clock", offering on paper a more reliable clock
source than fully virtualized solutions can generally do.

The components of the KVM infrastructure are open source and fall under a combination of
licenses based on the GPL license.

RedHat Inc backs the KVM solution as a full-fledged infrastructure for virtualization and maintains
a series of graphical and command line tools on its Linux distributions to manage it. Many of those
tools are interfaced to KVM through libvirt, in fact KVM is fully accessible through libvirt based tools.
Management tools present in RedHat Linux and derivate distributions like CentOS may be replaced by
different tools in other distributions like Debian Linux. Probably the most important command line
utility for easy and complete management of KVM on RedHat based systems is the one named virsh.

RedHat makes extensive information available about KVM, in particular
through its Virtualization Administraton Guide (ref [36]). Other information
sources are spread across the Internet, there included some mailing lists. Being

® part of the standard Linux Kernel, support for the KVM modules happens through
redhat® the usual development channels of the kernel itself. Generally speaking, each
component of KVM has its own development community and support channels,

which initially can be confusing in case support is needed or a bug must be filed for example.

KVM can be at the same time heaven or hell for system engineers in terms of scalability. Being
fully integrated with Linux, a KVM infrastructure offers freedom and flexibility. The drawback is that its
implementation requires much expert system engineering work on the host.

For example, KVM virtual machines can be stored into disk images, physical partitions or LVM
logical disks, but any of them must be configured and prepared either manually, during the OS install
or by 3" party management tools like cfengine or puppet. This is good for integration with complex
infrastructures where everything can be automated, but it moves the pressure for a well-functioning
solution from the maker of that solution to the engineer who is implementing it. That marks a strong
difference with a commercial solution (like ESXi) where a set of standardized choices are offered and
are easily "up and running". In that extent, even OpenVZ offers a level of automation slightly better
than KVM because OpenVZ is offered as an all-in-one solution versus the modular nature of KVM.

When using the standard RedHat Enterprise or CentOS Linux distributions, however, installing a
few "package groups" is practically enough to install the many packages and dependencies needed by
a KVM infrastructure:

Version 2 Page 25

Virtualization for the RIPE NCC box 3. The Technical Side

yum groupinstall "Virtualization Platform" "Virtualization Tools"

Deployment of virtual machines into a KVM infrastructure is possible in several ways. Importing,
exporting, making a snapshot of a VM are possible using standard Linux tools (like the snapshot
functionalities offered by LVM) . Virtual Machines templates in OVF format can also be imported.

There is limited direct experience with KVM within the RIPE NCC. However that should not form a
big obstacle because of its integration with standard Linux tools and practices.

3.2.4. THE EXCLUDED VIRTUALIZATION TECHNOLOGIES

Due to time and resource limitations, some very good alternative candidates had to be excluded
from this research.

LXC, offering OS level virtualization like OpenVZ but fully integrated in the standard Linux kernel
like KVM could have offered an alternative solution for system containers. The main reason OpenVZ
was preferred is that from some reports and from the information available, the LXC solution,
however successfully used in some cases, appeared not mature enough.

Once born as a research project in England and later acquired by Citrix, Inc, but still available as
opensource, Xen is an hypervisor running on Linux that could have been an excellent alternative to
KVM. Like OpenVZ, Xen needs its customized kernel to run. Like KVM it has a number of
paravirtualized resources, but its code is less tightly integrated with the standard Linux kernel code,
however efforts are being made in that direction.

The RIPE NCC, now mostly using solutions from VMware, has had past experiences with Xen that
were not always very positive. Information about the maturity and stability of the opensource Xen
were questionable, and there seemed to be interest in Gll to test a different technology, so KVM was
chosen.

Version 2 Page 26

Virtualization for the RIPE NCC box 3. The Technical Side

3.3. SETTING UP THE POC LAB

A reliable test setup is very important to make sure the outcome of a research can be relied upon.
The following paragraphs describe how the testing infrastructure for this research (also named POC

lab) and its monitoring were set up.

3.3.1. POC LAB HARDWARE AND VIRTUALIZED GUESTS

The POC lab was installed in a test space at the premises of RIPE NCC in Amsterdam. It was built

using Dell rack-mounted servers:

* Three servers to host the virtualization candidates (named colibri, robin and nightingale). Each

of them would host two identical guests on it, virtual machines or containers.
* A fourth server (named bat) for monitoring, control, collection and elaboration of results.

* A fifth server, named tt999 and installed like a TTM (test traffic measurement) node was

added as a reliable reference for time monitoring.

Figure 2: schematic view of the test infrastructure

Hosts Monitoring and
Control host
DellR320 |
DellR310
Dell R320 ‘
Time Reference node

Two servers hosting the virtualization candidates were Dell Poweredge R320 servers with the
same hardware specification as for the Atlas Anchor nodes (except for a lower amount of RAM
memory): 6 CPU cores at 1.9 Ghz and 8Gb RAM.

The third server was a lower end Dell Poweredge R310 with 4 CPU cores at 2.4 Ghz and 8Gb RAM.
Reason for using different hardware was the lack of extra R320 hardware available and the need to

perform as many tests as possible in parallel.

Version 2 Page 27

Virtualization for the RIPE NCC box 3. The Technical Side

OpenVZ was running on R310 hardware during the first stage of tests, this made benchmark and
test results not comparable among virtualization candidates during that stage but only within the
candidates, to test resource separation.

It was assumed that using different hardware in stage 1 did not invalidate any of the tests that
were executed. Baselines were made so that each virtualization candidate had an own reference for
the "expected" performance.

The virtualized guests on each of the candidates were identical and were assigned the same
resources in each stage of testing, according to this scheme:

* Instage 1, each guest had 2 CPUs (visible as 2 cores) and 2GB memory assigned

* In stage 2, each guest had 3 CPU (visible as 3 cores) and 4GB of memory assigned. This to
better test resource separation when making full use of the physical resources.

All guests were allocated 4Gb swap and about 64Gb disk space each:
* In VMware thin provisioned local storage was used (the default choice).

* In OpenVZ container files were on a separate LVM partition and shared the ext4 file
system with the host. In OpenVZ the swap space is virtual and managed by the kernel.

* In KVM one LVM Logical Disk was created on the virtualization host for each of the guests.
The guests were not using LVM themselves.

3.3.2. NETWORK CONNECTIVITY

After consultation, this project was assigned consecutive network space in a VLAN named NEW
SERVICE. The NEW SERVICE VLAN hosts much of the backend infrastructure of the Science Division, is
broadly accessible, allows Internet access but is protected by a firewall.

All servers part of the POC lab shared the same VLAN and were connected to the same network
switch, a Foundry x424. Having the time monitoring node in the same network space, with an average
round trip time (RTT) of about 200us, proved to be essential for precise time monitoring.

Using a fully separated VLAN might have been a better choice but was not possible. A shared VLAN
made the POC LAB subject to network broadcasts within that network segment, however the use of a
switch isolated the servers from unwanted non-directed traffic. This setup was assumed to be enough
for scope and realism of this research.

All physical servers hosting a virtualization candidate had two built-in network interfaces (NICs).
Both interfaces were connected to the same switch on the same VLAN. For the majority of tests in
stage 1 all virtualized guests were using just one physical network interface: the same as their hosts.

By the current design, the RIPE NCC box will be connected at remote locations by using one
network interface only. On request of the manager Gll and to test more implementation scenarios, in

Version 2 Page 28

Virtualization for the RIPE NCC box 3. The Technical Side

stage 1 the second network interface was configured to carry the traffic of one of the guests for some
special network tests.

In stage 2 the second network interface was used to separate (time) monitoring from test traffic.

In the VMware ESXi, the network interfaces of a VM are bound to the desired network interface
with a click in the management interface or with a one-liner from the command line. The change does
not require to reboot the guests and instantly transfers the traffic flows from one interface to another
(depending on the Spanning Tree configuration on the switch).

Both in OpenVZ and KVM virtual Ethernet interfaces are automatically added to the system for
each guest running. The bridging facilities of Linux can be used to bind those virtual network interfaces
to the desired physical interface, either manually using brct/ or automatically using the network
configuration scripts (under /etc/sysconfig/network in a RedHat/CentOS Linux distribution).

To be more precise, OpenVZ containers use by default a slow "venet" point-to-point interface to
route the traffic from the host to the containers. This interface is fully controlled by the host including
address assignment, has limited IPv6 support and cannot be modified from a container, where it is
assigned a non-default name. Such a setup violated the service requirement for a virtualized resources
and was not used.

Virtual Ethernet Devices (named "veth") were configured on OpenVZ containers, visible on a
container as normal network interfaces and assigned default names (ethO, etc). Such 'real' interfaces
are independent from the virtualization host where they only need to be bridged to a physical
interface.

In KVM, the paravirtualized driver virtio was used for the network interfaces, promising better
performance than fully virtualized interfaces. VMware VMs used by default a high performance
network driver names VMXNET3: also a paravirtualized driver. Paravirtualization is a field of interest
for VMware as well.

3.3.3. SYSTEM DEPLOYMENT AND THE DRAC CHALLENGE

For remote management and console, virtualization servers in the POC lab mounted a "Dell
Remote Access Controller" (iDRAC Enterprise version 7), fitted with an vFlash SD card usable as local
storage.

The server console can be accessed and used through either the DRAC web interface or ssh. In the
original intentions of Gll engineers, the combination of DRAC and vFlash could be used to install the
operating system on the remote nodes. An ISO image could be uploaded to the vFlash, and the servers
could be booted and installed using that image. RIS boxes had been installed locally using that
method.

The DRAC+vFlash solution came out to be impractical with remote nodes: upload of ISO images
through the web interface has proven to be unreliable and slow, unless done from a local network.

Version 2 Page 29

Virtualization for the RIPE NCC box 3. The Technical Side

Nonetheless the two CentOS systems and the ESXi hypervisor needed by this research were installed
using that method, to respect the original intentions of Gll engineers.

Further research during the Atlas Anchors pilot phase found a better way to install a Linux system
on a remote node. First by putting the I1SO install image on an accessible network share, to upload it
to the vFlash by using appropriate command line tools provided by Dell; then use the ssh facility to
obtain a console of the server and proceed with the setup. The web interface of the DRAC uses java
for the system console and often presents incompatibilities with non-Windows systems.

It remains unclear whether a similar solution can be used if the ESXi hypervisor has to be installed
instead, as in ref [16] in the bibliography.

3.3.4. VMWARE VSPHERE 5.1 AND DELL R320 HARDWARE

The standard VMware ESXi Hypervisor 5.1 ISO image, available for download from
www.vmware.com when setting up the POC lab, did not support Dell R320 built-in network interface.

That is still the case at the moment of writing.

A custom image of the ESXi 5.1 with the missing support for the network interface is made
available from Dell in the Driver Downloads section of their support site reachable from
www.dell.com. That ESXi 5.1 customized image is the one installed in the POC lab. VMware might add
the missing driver in future versions of the official ESXi image.

3.3.5. OPERATING SYSTEM SETUP

The first step when designing the POC lab was to know and respect the RIPE NCC operative
standards. Examples of activities involving the local infrastructure were: agreeing on the best network
VLAN, asking specific firewall rules, choosing host and domain names and insert them properly in the
ripe.net domain. Or decide the best way to install a Linux host. Much cooperation about these matters
happened with the OPS department and less often with GlI engineers.

The RIPE NCC infrastructure offers PXE automated setup of CentOS Linux and uses the system
configuration and management tool cfengine. These options were initially considered for the POC lab
to have test systems as close to RIPE NCC standards as possible. After a number of trials, conclusion
was that the research could provide cleaner results without using the overhead added by that
automation. In addition, the future RIPE NCC box would not use that infrastructure in its current form

and it was not among the scopes of this project to make a cfengine configuration for the RIPE NCC box.

All virtualization hosts, virtual machines and containers in the POC lab (except the host intended
to run the ESXi VMware Hypervisor) were installed with a basic 64bit setup of the Linux CentOS 6.3
distribution, by using its official "network install' 1SO image. In OpenVZ the latest official CentOS 6.3
template had to be used instead of the ISO image. Under VMware the vmware tools were also
installed in the guests.

Version 2 Page 30

Virtualization for the RIPE NCC box 3. The Technical Side

Once installed, all POC lab servers, hosts and guests were made remotely manageable through
shared ssh keys. A number of shell scripts helped the automation of several operations throughout the
POC lab during the entire project, included package and benchmarks install, configuration, fetching of
logfiles and test results and so on. Most operations were centralized on the monitoring host bat.

A full upgrade of all packages was executed on all Linux hosts and guests at the end of October
2012 (before the test had begun), after which packages installed, configurations and enabled system
services were freezed and kept for as much as possible equal across all servers, to guarantee the
running of benchmark and tests under the same conditions.

This research used the OpenVZ RHEL6-based vzkernel version 2.6.32-042stab063.2; KVM host

and guest and both VMware virtualized guests used the CentOS kernel version: 2.6.32-
279.11.1.el6.

3.3.6. NTP CONFIGURATION

Timekeeping deserved special attention in this project, becoming the subject of another research
into a research that provided a plethora of interesting information that unfortunately cannot be all
presented into this document.

For the sake of this document, suffice to say that all PC compatible hardware uses a clock source to
keep its time synchronized in hardware.

In early PC the clock source was the archaic CMOS clock powered by a battery when a system was
off. Today there are more modern clock sources, not least the HPET (High Precision Event Timer) in the
chipset and the ACPI PM (Power Management) counter. On Linux systems the chosen default clock
source is the TSC or Time Stamp Counter, that counts the number of clock cycles since the last boot.
Modern multicore system with dynamic clock rated provide a constant tsc whose rate remains fixed if
the core rates vary, to prevent time drift due to sudden clock variations.

The network time protocol (NTP) played an important role into time monitoring, as paragraph 3.5
will describe, but a good NTP configuration was also essential to keep the right time on both
virtualization hosts and guests, like some graphs in the Results-Attachments document will show.

Virtualized guests all have a virtualized constant tsc and use that as standard clock source. But
how good would timekeeping be when only using that clock source and no NTP?

A test has been run by leaving host and virtualization guests running with the NTP daemon ntpd
inactive for several hours (i.e. only querying the inactive server used for monitoring). The resulting
graphs (in the Results-Attachments document) have shown a time skew incompatible with the
requirements of this research. NTP or any better time synchronization method must be used on
production servers where the time resource is critical.

VMware also offers a facility to periodically synchronize its guests to the time of the hypervisor
host through the VMware tools at regular intervals, but VMware itself in a number of sources suggests
to rather to use NTP for better timekeeping on Linux systems (ref. [17] in the bibliography).

Version 2 Page 31

Virtualization for the RIPE NCC box 3. The Technical Side

Each virtualization host and guest in the POC lab ran the ntp daemon with a configuration similar
to that of new Gll servers provisioned by the cfengine management tool. That configuration contained
TTM servers located in the region of Amsterdam. As a reminder TTM nodes with their built-in GPS
time reference offer a very precise stratum 1 clock source with maximum offset variations below 50

psec.

The NTP configuration used in the POC lab would fit well with the generic case of a RIPE NCC box,
since the POC lab is located in Amsterdam. Gll might want to carefully evaluate what can be the best
standard NTP configuration for remote Atlas Anchor nodes or RIPE NCC boxes and especially when
TTM nodes will start to be decommissioned.

The two OpenVZ containers were the only necessary exception to the standard NTP configuration.
By default, OpenVZ does not allow to run ntp from a container, unless configured to do so. Running
the NTP daemon from within a container and on the virtualization host is not recommended:
containers share the same clock source as their host and multiple NTP daemons would end up to

compete for timekeeping.

OpenVZ containers have been configured to allow the run of NTP, but without any active peer
except the inactive one used for monitoring purposes, as explained in paragraph 3.5. In this way the
NTP daemon on the container would not conflict with the one on the OpenVZ host. Should OpenVZ be
used in production, NTP does not need to run at all into a container.

3.3.7. THE KVM-CLOCK PARAVIRTUALIZED CLOCKSOURCE

At the beginning of this research much expectations were posed on a relatively new
paravirtualized clock source offered to its guests by KVM named kvm-clock. This clock source would
provide a much more stable time reference than the virtualized tsc. According to some sources,
notably SuSE, in presence of the kvm-clock clocksource NTP should not be used for active timekeeping
(same as for OpenVZ) to prevent conflicting timekeeping between virtualization host and guests (ref.
[41]).

kvm-clock is active by default and was of course tested on both KVM guests in the POC lab when
they were installed. Unfortunately, its performance was largely not up to the expectations.

When kvm-clock was used, at least one of the two KVM guests show through the monitoring very
strange time drift patterns, every time different and hardly ever regular, always failing at mantaining
any accurate timekeeping. The 'misbehaving' guest seemed to be the one booted as last. The other
guest did manage to maintain good time with sub-millisecond stability, but often showing incidental
'big' offset jumps around 300-500 ps (compared to 100-200us variations on VMware guests).

Several attempts have been made to understand the source of this unstable behavior. Similar
behavior was seen with both an earlier kernel version (2.6.32-279.9.1) and the most recent one
(2.6.32-279.11.1).

Version 2 Page 32

Virtualization for the RIPE NCC box 3. The Technical Side

Configurations and settings were checked and others were attempted: NTP servers for time
synchronization have been enabled at some point in the KVM guests as RedHat suggests (ref. [42]). In
that case a fight was visible in time monitoring graphs, with kvm-clock producing wrong time skew and

the NTP daemon trying to correct that, making matters worse.

Not all graphs for all trials are available or have been indexed because this issue happened at the
early stages of the project when the entire monitoring was not yet in place, but the "baselines" section
of the Results-Attachments document show both cases of kvm-clock being observed with and without
NTP peers active for twelve hours (NTP was always active on the virtualization host, though).

This research concluded to the best of its findings that the kvm-clock paravirtualized clock source
is at least not yet mature enough to be used, or incompatible in some way with either the kernel

versions tried or the hardware used.

To continue the research, kvm-clock was permanently disabled in KVM guests, by using the 'no-
kvmclock' kernel option at boot. KVM guests reverted to use the virtualized constant_tsc clock source,
just like VMware guests did. Since kvm-clock was disabled, both KVM guests (with NTP now
permanently active) did show a relatively more stable timekeeping with a similar order of magnitude
as that of VMware guests, however KVM guests apparently kept showing broader offset variation

trends.

3.4. SYSTEM AND NETWORK RESOURCES MONITORING

The POC lab server named 'bat' was the center of all test, monitoring and data processing

activities.

The status but above all the performance of system and network resources was subject to passive
monitoring by polling snmp and nrpe sources on all POC lab hosts and guests and to active monitoring
by sending them DNS queries and by generating ping bursts from and to them. The tools or software
packages used for monitoring were all open source:

¢ cacti", the most important source of information, graphing all

system and network load statistics with a polling interval of one k) ‘ ” T
minute, RRD data retention up to one year and the use of the
advanced poller named 'spine'. Extra data templates of cacti were implemented, to better
watch disk 1/0 transfer rates, NTP, detailed CPU, 1I/0O and memory statistics produced by

sar and iostat tools that ran on the systems and were queried through nrpe.

* Observium, a fully automated passive monitoring tool like cacti: it offered a second
observation point watching the most important metrics in parallel with cacti.

* Smokeping performed bi-directional network latency monitoring with a poll interval of one
minute and final RRD data retention of two months. Smokeping was configured with

three kinds of tests to execute through the primary network interface:

Version 2 Page 33

Virtualization for the RIPE NCC box 3. The Technical Side

o ping bursts produced by fping were sent at regular intervals to hosts and guests;
o all hosts and guests sent automatic ping bursts to the time monitoring node;

o equal DNS queries were made from the monitoring server to a simple caching DNS
server installed on all guests and hosts of the POC lab.

Ping tests allowed to observe bidirectional round trip times (RTT) and packet loss variation on the
network links. DNS checks allowed to see any change in DNS response times.

sm Qulﬁ;c Of the er.ltire .monitoring setup Smokeping offered the most insigh.n.‘ul

graphs, especially important to observe resource separation and the ability

of the different technologies to cope with high load on the network. The graphs provided by cacti,

were useful as a figure of the system load levels , the disk I/0 and the network interface throughput
reached during tests and benchmarks.

3.4.1. MONITORING LIMITATIONS

The system monitoring had some clear limitations. The polling interval of 1 minute in cacti and the
test interval of 1 minute in Smokeping could of course only provide a resolution limited to one minute.
That is the reason why cacti could not be the primary method to monitor the stability of time.

One minute was actually a ceiling: cacti had more than 250 target items to poll and its standard
poller coped badly with them when some timeout occurred. The multithreaded spine poller improved
the fetching of statistics only after proper fine-tuning. The Smokeping engine written in perl, in
combination with the apache webserver had severe troubles and high memory requirements when
the RRD data retention period was longer than two months, with 1 minutes data testing intervals and
the retention of all results. Using fastcgi slghtly improved its functionality.

Another limitation of the monitoring was in its empirical nature: all monitoring results were
necessarily approximations of the real picture, not scientifically precise measurements. Such
approximation did suffice to come to relevant conclusions and give answer to the main scope of this
research, but it fell short when more precise data analysis was necessary.

3.5. MEASURING TIMEKEEPING STABILITY

Another essential challenge of this project was to figure out a way to monitor the time stability of

any virtualization host or guest with sub millisecond precision and with the lowest possible error rate.

One possibility could be to use a GPS antenna connected to each virtualization host, in a way
similar to Test Traffic Measurement nodes, and then refer to the hosts as time reference. This idea
was not applicable for many reasons.

Version 2 Page 34

Virtualization for the RIPE NCC box 3. The Technical Side

Using an externally powered GPS providing a stable pulse through the serial port would not be a
good idea: that pulse would keep the host in sync, but not the guests. A virtualization guest cannot use
its own host as time reference, to avoid a dangerous circular reference (ref. [17] and others).

The NTP (network time protocol) daemon ntpd offered the solution. | will present some elements
of the inner functionality of NTP time synchronization (quite briefly due to scope/space limitations of
this document), to describe how time monitoring was implemented.

The algorithms implemented in the NTP daemon, ntpd, selects one preferred server among the
ones configured and queries it about once a minute by default, dynamically changing the query
intervals or selectively preferring another server, depending on a number of factors. The returned
timestamps of multiple queries are evaluated to calculate the best possible time offset; the system
time is then slowly corrected as necessary.

When enabled, the standard logging of the NTP daemon reports the calculated time offset or time
skew of each of the configured servers in the peerstats logfile. A query performed by common
monitoring tools or using the ntpq tool reports that offset, that is: the estimated time offsets after the
NTP algorithms evaluated multiple raw queries to its servers.

The NTP deamon can also save unfiltered results of each single NTP query in the rawstats logfile.
Raw NTP queries, one query reported on each line of the logfile, contain among other fields the peer
address and four timestamps:

* The ORIGINATE timestamp (OT) set by the sender when the query is sent.

* The RECEIVE timestamp (RT) set by the receiver when the query is received.

* The TRANSMIT timestamp (TT) set by the receiver when the answer is sent.

* The DESTINATION timestamp (DT) set by the sender when the answer is received.

The NTP daemon elaborates those timestamps to calculate delay to the ntp server, time offset and
jitter or the standard deviation between offset reads, and then writes those values in the peerstats
log, as described earlier.

According to ref. [11], offset and delay can be calculated by using the following formulas:

(RT - OT) + (TT - DT)

5 delay = (DT - OT)-(TT - RT)

offset =

To perform time monitoring for this research, each host or guest in the POC lab ran an NTP
daemon performing raw query logging.

One Test Traffic (TTM) box installed in the same network as the POC lab was set as a noselect
server in the configuration of the NTP daemons. With the noselect option that server was never
chosen for time synchronization. Time synchronization was done by using selectable ("active") NTP
servers or not done at all if no other servers were specified (for example in OpenVZ guests, see
paragraph 3.3.2).

Version 2 Page 35

Virtualization for the RIPE NCC box 3. The Technical Side

The minimum and maximum polling interval for that noselect server were set to the minimum
possible (372 seconds) so to query that clock source about every 8 seconds. The rest of the NTP

configuration remained unchanged.

An excerpt of the NTP configuration present on all hosts and guests for time monitoring is
published below.

Excerpt ntp.conf for time monitoring

Never panic
tinker panic 0

One stratum 1 source reference in the form of one TTM box
for statistic collection only
server tt999.ripe.net noselect minpoll 3 maxpoll 3

Enable writing of statistics records.
statistics clockstats cryptostats loopstats peerstats
rawstats

Automatic scheduled jobs on the monitoring server bat fetched and saved each night the daily
rawstats logfiles from each POC lab server. A conversion script ran for each host, extracting the query
answers from the test traffic box intended for monitoring, converting the time format from UTC to
readable values, then calculating offset and delay with the formulas above.

Converted time, offset and delay were saved in a file. Statistics and a 24 hours graph for that day
were generated based on that and stored in a tree of folders accessible through a web browser.

A set of graphing scripts and templates that | wrote for the

S")J‘_] U J) | O"JJ Software gnuplot could be run either manually, or automatically by

- the graph generator scripts described in paragraph 3.7, to produce

high resolution graphs of the timekeeping for a certain period and with a certain scale, aggregating

guests and hosts of each virtualization candidate in one graph.

In addition to rawstats time monitoring, NTP monitoring of much lower resolution was performed
using cacti and sending ntpq queries to that same TTM node used in the monitoring through rawstats.
The graphs generated through cacti were often used as reference to confirm the results produced by

the rawstatS-based graphs.

3.5.1. TIMEKEEPING QUIRKS AND POLLING INTERVAL LIMITATION

All time monitoring graphs in the Results-Attachments document are in fact formed by two
graphs, the one above shows the offset variation or time drift registered. The one below the
corresponding delay to the time reference node, more or less corresponding to the Round Trip Time.

Version 2 Page 36

Virtualization for the RIPE NCC box 3. The Technical Side

The delay in time monitoring was an important measure of two factors: the precision rate of the
monitoring itself and some insight about the origin of the time skew.

The precision rate of the offset variation is given by the average delay: by a round-trip delay of 200
usec, the time offset was correct by a possible variation of £200 psec. Enough for this research
seeking time precision below 1000 psec (1ms). In fact, the first TTM node for time monitoring
(tt97.ripe.net) resided in a different VLAN than the POC and had an average delay of about 1100usec!
That was certainly not good enough to measure sub millisecond time accuracy and was replaced by
tt999.ripe.net installed in the same VLAN as the POC.

When looking at a variation in the offset, one should also look at the corresponding delay at the
same moment: if a 1ms offset saw a correspondent 2ms delay (round trip, thus double time): that
meant that the time drift could be related to some "slowness" to reach the monitoring server, not
necessarily indicate "real" drift of the system clock.

A higher delay could be caused by too much CPU or I/0O load on the host, or by network buffers full
or by some peculiar network disturbance along the path to the monitoring node.

There was no way to establish each time the real cause of a
peak in delay with a correspondent offset and if that indicated
'real' time skew or was just due to 'something' slowing down a
few NTP queries. If not using rawstats statistics, the NTP
algorithms would have filtered out the peak exceptions and come
out with a mean value. But in that case we would probably draw
what NTP thought the real offset was, i.e. an approximation.

Those peaks in time monitoring invited to observe time drift

THE TATTOO

, more as a continuous function. For the way timekeeping works in

a Linux system, subsequent calls are made to the adjtimex()
function, that reads the clock source and performs any necessary

adjustment. NTP works on top of the system time and calls the
function adjtime() when has to make a change smaller than 2145 seconds. That change happens by a
gradual slew of the clock (according to an unconfirmed source: 0.5ms per second at most, in Linux):
not suddenly.

By design, NTP would not suddenly force a big jump in time that could cause instability (calling the
function settimeofday()) unless having a considered good reason to do so.

One-time peaks with correspondent delay could then better be looked at critically ("can this be a
query facing a loaded network stack?") to rather observe the trends of timekeeping. Not single peaks,
but many peaks after each other or a steady variation of the offset would more certainly indicate time
drift. Even the time baseline of a physical host (in Results-Attachments) shows occasional small peaks.

One of the critics to the time monitoring implemented for this research was that the NTP deamon
had a minimum interval between queries of 8 seconds (the shortest allowed, set through the minpoll

Version 2 Page 37

Virtualization for the RIPE NCC box 3. The Technical Side

and maxpoll configuration options), so that nobody could be sure of what happened during those 8
seconds and if the time remained stable.

Statistically, 8 seconds polling interval meant as many as 10800 queries in 24 hours or 450 in an
hour, giving good grounds for the probability that no time skew had happened during the 8 seconds.
Also based on the previous remarks by which the system clock would not incur into big jumps at once
and then jump back to the original value within such a short time frame.

Under normal circumstances, in a Linux system the maximum possible 'real' time skew during 8
seconds should top 4ms at the most (0.5 * 8). This is presumably a hard limit of this monitoring
method, together with the level of uncertainty given by one-time delay increase and relative offset
peaks. To be sure of the most absolute adherence to the requirements NTP should have been made
capable to send an ntp query every 2 seconds at the most and always have an impossible flat delay, or
another method for time monitoring had to be invented.

3.5.2. SHARED NETWORK LIMITATION AND USE OF SEPARATE INTERFACES.

Another limitation of the original time monitoring implementation in this research was due to the
fact that network communication to the time monitoring node had to be done on the same network
interface as any other traffic, and then was subject to network traffic on that interface. Reason for
that setup was the requirement that each guest should only have one network interface (2.5.2).

Consequence of the limitation was that time monitoring was not reliable during network and
combined tests in stage 1 because communication to the time monitoring node was too disrupted by
the network load to guarantee consistent results.

During stage 2 of testing that limitation was partially taken away: monitoring traffic including time
monitoring was redirected through a second interface using private IP addresses. Virtualized guests
had this interface bound to the second physical interface of their virtualization host. A temporary
exception to the service requirement of the Atlas software probe to only have one interface active on
the system where it runs.

By using separate interfaces data flows were then separated so that time monitoring was made
more reliable also for network related tests in stage 2, an important breakthrough that allowed to see
interesting additional results, but added certain challenges to data analysis.

Time did not allow to fully separate the traffic flows, configure a new VLAN and the second
interface in the time monitoring node: hosts and guests were talking to the time monitoring node
using different interfaces and different IP addresses but still on the same VLAN. Looking at the 24
hours time baseline for a hardware host with no virtualization has given enough grounds to consider
the drawbacks of sharing the same VLAN negligible enough for this research..

Version 2 Page 38

Virtualization for the RIPE NCC box 3. The Technical Side

3.6. MEASURING RESOURCE SEPARATION

Resource Separation and Availability was a required feature of a virtualization candidate for the
RIPE NCC box. In the intentions of this research, that requirement could be tested using these steps:

* Find a method to produce repeatable load on guests and hosts while allowing to measure
the performance achieved.

* Produce load on each host and each type of guest alone and measure the available
processing power available (or disk I/0 performance, or RAM speed), to have a baseline of
the expected performance.

* Produce load and measure the available processing power available (or disk 1/0
performance, or RAM speed) under a number of relevant use cases of competition on

resources.

* Compare the results within each virtualization candidate between the baseline and the
other use cases to see how the competition on resources had affected the performance of
one or both players in each use case.

The extent of the services to run on a RIPE NCC box was not fully defined at project start (except
for some basic requirements). To embrace the maximum number of possibilities and give widely
usable answers the benchmarks executed during this research tried to remain generic for as much as
possible, focusing on the technical requirements of the virtualization candidates but not on specific
RIPE NCC services.

On the other hand the project took into consideration some specific factors, for example the
assumption that given the hardware specification provided and the candidate services expected, A
RIPE NCC box would generally not overcommit its CPU or memory resources, because it would run just
2 or 3 services in its first year of operation or longer. This helped to decide the sizing of the guests and
excluded resource overcommit use cases to focus on resource sharing or fair separation instead.

All kinds of tests executed had a name tag assigned that was used throughout the research to
avoid confusion. Test names and all use cases considered by this research are detailed in the Results-
Attachments document .

3.6.1. TESTING THE VIRTUALIZATION HOST

Next to virtualization guests, on request of the GIl manager this research had the extra scope to
test and benchmark also virtualization hosts to see if they could fit the requirements to run production
services. Certain services could then run on a guest, others (for example more time critical ones) could

Version 2 Page 39

Virtualization for the RIPE NCC box 3. The Technical Side

be left to run in the virtualization host. For this extra scope a number of additional use cases were
added.

Only OpenVZ and KVM offered an "usable" virtualization host to test. The hypervisor in ESXi 5.1
(unlike the older ESX hypervisors) cannot be considered like the full-fledged Linux virtualization host of
OpenVZ and KVM. The ESXi hypervisor is a very stripped down system. It can be made remotely
accessible through ssh (but no ssh keys allowed) or run a stripped-down ntpd deamon for example,
but has very limited support for installing or building new packages and in many ways does not behave
as a physical host. For example every time the ESXi management interface is used the clock of the
hypervisor (independent from its guests) is automatically synchronized to the clock of the Windows
machine running the management interface, that would often also reset its NTP configuration files!

Time statistics have been collected from the ESXi hypervisor host in an initial period and the time
on the host (with the usual NTP configuration) always looked relatively unrelated to that of its guests.
The ESXi host would not be included into the host use cases for testing and benchmarking.

3.6.2. SYSTEM BENCHMARKS AND LOAD GENERATION

Finding concrete and repeatable ways to test and compare CPU, Disk and memory performance in
different use cases was no easy task. A number of variables and questions did play a role, like the
synchronization of the load applied when two guests were tested simultaneously.

Two Benchmarking packages were chosen for the scope, those were:

* The Phoronix test suite, one of the most complete

benchmarking frameworks for the Linux operating system

freely available under the GPL license. The software, written

in php and compatible with different Linux distributions, is I
P

able to automatically fetch all dependencies, download, horonix Test Suite
compile and transparently run a wide range of benchmarks.

It then automatically generates results web pages but is also able to manipulate and export
the results.

* Unixbench, a "basic performance indicator of a UNIX-like system" to quote its description;
freely available under the GPL v2 license and implementing a number of well known system
benchmarks, like Dhrystone and Whetstone to test the CPU performance, derived from the
ones used by the historical BYTE Magazine.

The "Phoronix Test Suite" (PTS) software is associated to the initiative of the site
openbenchmarking.org to openly share benchmarking suites and results. A few specific test suites

available on the site were chosen for this research. Together with the version 4.2.0m2 of the PTS
software, these were installed, built and tested on each host and guest in the POC lab between
October and November 2012:

* pts/cpu, of variable duration, for testing and load stressing the CPU resources

Version 2 Page 40

Virtualization for the RIPE NCC box 3. The Technical Side

* pts/disk, of variable duration, for benchmarking disk 1/0 resources

* pts/memory, duration between 30 and 40 minutes, for benchmarking the memory

The pts/memory suite was also used in stage 2 when, in order to produce a smaller but more
usable subsets of results, two customized suites replaced pts/cpu and pts/disk. Both of them with an
average duration of an hour:

* ripebox-cpu

* ripebox-disk

Despite many efforts, not all benchmarks part of a suite did always run successfully. This can
happen when running system benchmarks but could invalidate certain conclusions of this research
when some tests were meant to run in parallel. Because of that all test suites have been tested before
the ‘'official' runs: certain issues have been solved while other benchmarks that were too
unpredictable were disabled.

In stage 2 an additional load generator was added: the opensource tool called stress, able to
predictably generate high CPU, DISK or Memory load. The stress tool has been tested to find the best
parameters that would not cause crashes in the POC lab. After that, a 20 minutes period of heavy and
stable load generation (respectively for CPU, DISK or Memory) was automatically started after each of
the benchmarking suites. This very extreme and entirely reproducible source of load has added
interesting insights to the end results.

The BYTE CPU benchmarks always failed when run through the Phoronix Test Suite and had to be
disabled from there. After stage 1, the impression was that some more "dry" metrics to compare CPU
performance were missing. For that reason also the Unixbench software was installed in the POC lab
during stage 2.

A compact, complete system benchmarking suite, Unixbench was run separately from the PTS and
through a number of insightful use cases, providing an additional figure of system performance as
well.

Description of the benchmarks part of the test suites, numeric results of all single benchmarks
executed, comparative tables and remarkable graphs of the timekeeping during system tests are
published in the Results-Attachments document. Results of System Benchmarks executed through the
Phoronix Test Suite by this research have not been published on openbenchmarking.org due to a
limitation imposed by the license of one of the virtualization candidates.

3.6.3. NETWORK TESTS
Testing a network is an entire field of study with potentially hundreds of variables. Many factors

external to the host being tested can adversely influence the results and have to be studied.

Efforts were made by this research to minimize external factors and contribute to the reliability of
network tests by building a consistent test infrastructure where even the CAT 5E cables used were the

Version 2 Page 41

Virtualization for the RIPE NCC box 3. The Technical Side

same. Extra care has been put in checking that hosts and guests being tested were not generating
other unwanted network traffic during the tests. Baselines have been made to observe the 'expected
behavior' when necessary. That lead to the observation that network flows can hardly be identical.

Despite all efforts, the results produced by network and combined tests were and remain of

empirical value. This research did not aim to prove which network interface or network stack was
performing better, like it did for system resources.

Primary scope of network tests was to check resource separation of the network stack under
different virtualization technologies. In addition to that: in some case the setup of stage 2 helped
observing the impact of extreme network load when the timekeeping relies on NTP.

After some research, the packet generation tool iperf was chosen for network and combined tests.
Freely available through a BSD license, iperf is able to generate load using either TCP or UDP protocols
and also reports certain statistics when executed, like bandwidth and packet loss. The tool can
generate bidirectional TCP or UDP packet flows through a server/client infrastructure.

For each network test, a server/client pair was needed. When two systems were involved in a test,
two pairs were needed for a total of four systems involved. Because no extra hardware was available
for testing, test pairs were formed in each stage using all hosts and guests of the POC lab. Also for this
reasons network tests could only be executed sequentially, on one virtualization technology at a time.
The network performance of two different pairs could not be exactly compared for small differences.

The iperf tool was implemented into an automated testing infrastructure | developed in order to
generate two main types of data flows:

* aflow based on 10 TCP sockets handled by 10 threads, with the scope of filling up the data
link (all network links were 1 Gb links);

* a 120Mbit UDP flow, to observe data loss and latency variations.

Those simple data flows were combined in several different use cases to be run among guests and
hosts, in a similar way as system tests. That could give answer to several questions about network
resource separation and beyond.

The vast majority of tests were executed in what is the current implementation of Atlas Anchor
Nodes and was expected to be the initial implementation of the RIPE NCC box: all virtualization hosts
and guests sharing the same network interface.

On the request of the GIl manager and to envisage future implementation scenarios, three extra
network tests looked at the case that two network interface would be used for production traffic in the
RIPE NCC box. For that use case one of the guests was bound to the second physical interface on the
host.

More details about the server/client pairs and extensive explanation of network tests use cases
are published in the Results-Attachments document.

Version 2 Page 42

Virtualization for the RIPE NCC box 3. The Technical Side

3.6.4. COMBINED TESTS

Combined tests were meant to observe the interaction between system and network stack in case
of load; their most interesting contribution to this research was to observe the impact of combined
system and network load on timekeeping and NTP performance, a target made possible in stage 2.

In stage 1 combined tests employed the same test types or test suites as in network and system
tests: one system would run one benchmarking suite to generate load while the other would generate

one of the two network data flows defined in the previous paragraph.

Combined tests, initially producing redundant results in line with those of System and Network
tests, have proven essential for conclusions about timekeeping and to confirm earlier findings.

In stage 1 the load generated by benchmarking suites was not steady enough to have much impact
on the network activity in the other VM. For this reason, system benchmarks were entirely replaced in
stage 2 by the stable heavy load generated by the stress tool, respectively on CPU, DISK or Memory.

The Results-Attachments document explains use cases and combined tests that have been run.

3.7. AUTOMATED TEST SCHEDULING, DATA FETCHING AND GRAPH GENERATION

Network and Combined tests required extreme care in making sure they were running
undisturbed, and that all monitoring metrics were collecting the needed information. Multiple trials

had to be run before seeing stable results.

System benchmarks were manually scheduled on each guest or host using the 'at’ system utility.
To run network and combined tests a layer of automation was developed instead, using shell-scripting
language.

An input file on the controlling host bat would contain a complete schedule of all use cases to run
in sequence, written according to a certain format. At specific times, a "test run script" would read the
next use case to run and remotely invoke a "test execution script" in one of the POC hosts or guests.

The "test execution script", in turn, would start all requested tests or benchmarks on the host
where it was running, on its paired server in case of network tests and also on the other guest, in case
of combined tests: all spawning screens in background. The test execution script also took care of
logging the output of tests in the respective hosts or guests where they ran.

The automated test execution, perfected after extensive debugging, allowed to run several rounds
of tests of fixed duration also during the night, dramatically cutting down the time needed, or almost

doubling the time available to this project to run benchmarks and tests.

Version 2 Page 43

Virtualization for the RIPE NCC box 3. The Technical Side

The "test run script" part of the automation infrastructure also had another scope: it translated
the test schedule to another format associating test names and execution times, to allow the
automatic generation of graphs.

The "drawgraphs" graph generation script for network tests and its enhanced version
"drawgraps+" for system and combined tests read test names, time and date of execution and then
fetched or generated specific types of graphs for the specific hosts tested in each specific timeframe.

That script had three different sources:

* the cacti monitoring system
* the smokeping network latency monitoring
* ntpd rawstats from all hosts and guests (daily fetched and saved locally on the bat server):

in this case "drawgraphs" called existing scripts that generated time monitoring graphs.

The same script finally saved the graphs in a directory tree structure ordered per test name and
virtualization type. That tree, accessible through a web server, allowed immediate consultation of all
system, network and time monitoring graphs of a specific test run by just knowing the test name.

A test scheduling file looked as simple as this excerpt, the scripts took care of all the rest:

Excerpt 1: test scheduling input file

NS5, KVM, test5+testb

tcp testb tcp test6 300
NS6,VMware, testl+test?2
tcp testl udp test2
NS6,0penVZ, test3+test4
tcp test3 udp test4d

The "test run script” also took care to set the start time of tests to some minutes earlier so that the
graphs would show the change from idle to the moment a test began. Another excerpt shows an
example of =the file for automatic generation of graphs it produced:

Excerpt 2: input file for automatic graph generation

NS5,KVM, test5,2012-12-06,08:55,2012-12-06,09:30, testb6
NS6,VMware, testl,2012-12-06,09:25,2012-12-06,10:00, test?2
NS6,0OpenVz, test3,2012-12-06,09:55,2012-12-06,10:30, test4

One full round of network tests in stage 1 produced as many as 654 graphs! Certainly not all of
them were necessary, but each of them could be easily consulted at any time speeding up the data
analysis consistently.

Version 2 Page 44

Virtualization for the RIPE NCC box 4. Outcome and Advice

4. OUTCOME AND ADVICE

4.1. SECTION SUMMARY

This section summarizes results and conclusions of this research. It also brings an advice about
possible perspectives for the RIPE NCC box.

Detailed results, comparative graphs, monitoring and timekeeping graphs are published in the
Attachments-Results document associated to this paper; implementation details, also covering some
scalability aspects, are discussed in Section 3 of this document.

Concerning the research outcome: each of the main technical requirements is treated separately,
with a subsection per each virtualization candidate. Paragraph 4.7 considers all the results and advices
about short term and long term perspectives.

This part of the document ends with a number of side notes and finally a list of open questions and
subjects not treated by the research or to be further investigated.

4.2. RESEARCH OUTCOME

A global summary of the outcome of this research is visible in Table 4 below.

v
(i
o Resource Separation 2
. (T [})
Requirements i 3 5
3 2 2 q‘% o
) = m 0 o
3 o 7] = 2 |Z @
. ... ®) A < s =
Virtualization - c < o o |<
S o E =
Technology w = Version Tested
VMware ESXi 5.1/ Dell custom image for R320
OpenVZ vzkernel 2.6.32-0425tab065.3
KVM kernel 2.6.32-279.11.1, gemu 0.12.1.2-2.295

Table 4. Outcome Summary Table

Conditionally
Compliant

Version 2 Page 45

Virtualization for the RIPE NCC box 4. Outcome and Advice

All candidates did in general comply to the System Resources Separation requirement for the way
it was observed by this research (no resource overcommit of Memory or CPU).

When a virtualization host is present (OpenVZ and KVM) it is recommended to not use the host for
production services, because it often negatively affects the performance of the guests. This is
especially true when Disk I/0 is involved.

Network Resource Separation, by which the network stacks of the guests behave independently
from each other, is only supported by the ESXi Hypervisor in its default configuration.

An interference of the Memory subsystem under load with the Network stack has to be solved or
have a concrete workaround, for the ESXi to reach full compliance to resource separation.

The product from VMware offers the best scalability when looking at a long term perspective, and
can be very resilient and require very little maintenance efforts, once installed. This is different than
KVM, with its modular nature and high likelihood of customized solutions that may need to be

implemented and maintained.

The "accurate timekeeping" requirement, for the way it was defined, has no unconditional winner.
Carefully configured NTP with stable peers is the minimal condition for stable timekeeping, however a
ceiling of "Ims" set during the research may be too strict to be respected at all times by a
virtualization technology and maybe even by physical PC hardware.

Version 2 Page 46

Virtualization for the RIPE NCC box 4. Outcome and Advice

4.3. ACCURATE TIMEKEEPING

Timekeeping represented a critical requirement of the research. It has historically been a
weakness of hypervisor-based technologies, because of the very nature of full virtualization connected
with the way clock synchronization works.

Despite all instruments employed, the complex monitoring and the results obtained, this research
is not able to give a definitely proven verdict whether the clock in certain virtualization technologies
can remain stable at all times. It certainly appeared worse than on a physical host.

This paragraph provides some indications and presents the most relevant issues with timekeeping
encountered during this research. The decision to accept one technological solution versus the other,
or none of them, depends on the level of compromise that can be accepted (see paragraph 4.7).

4.3.1. VMWARE VSPHERE HYPERVISOR (ESXI)

When supported by reachable and stable Network Time Protocol servers, VMware has maintained
a very good trend of stable timekeeping throughout the research, for an Hypervisor based solution.
For that reason it has also been kept under tight observation.

A few issues with clock stability can be seen in the Results-Attachment document, where many
timekeeping graphs regarding VMware are shown. One of the first events happened during a brief 1/0
hiccup caused by heavy disk benchmarks, something that has affected all technologies tested at least
once.

An ESXi guest may incur into an occasional offset peak, often lower than one millisecond, that
could often be associated to other subsystems like 1/O, Memory or Network being loaded, as it is
shown by a corresponding delay in a time monitoring graph.

Stage 2 tests and in particular some of the last graphs shown in the Results-Attachments
document have demonstrated the necessity of an ESXi guests to have a stable external clock source
like NTP in order to maintain the clock accurate.

The biggest issue with timekeeping in VMware was the resource interference between memory
and network stack (paragraph 4.4.4) provoking network delays and concrete time drift, an issue that
needs further investigation.

A workaround or a technical solution to prevent the issue above are the minimal conditions to
make the ESXi compliant to all requirements of this research.

Version 2 Page 47

Virtualization for the RIPE NCC box 4. Outcome and Advice

4.3.2. OPENVZ

The container-based virtualization offered by OpenVZ is conditionally compliant to the
timekeeping requirement. For its technical nature, OpenVZ guests have been expected to offer near
native access to system resources, and time accuracy equivalent to their physical host: the latter was
often the case during the vast majority of tests and benchmarks.

However, the timekeeping graphs during network tests and the time baseline without NTP active
peers published in Results-Attachments have shown the reliance of OpenVZ to well configured
external clock sources, as discussed in paragraph 4.3.4.

In OpenVZ only one instance (either the virtualization host or one of the guests) can have an NTP
configuration with active servers for synchronization, to prevent conflicts. During this project the
virtualization host was performing clock synchronization.

4.3.3. KVM

KVM or the Kernel Based Virtualization solution is deemed not compliant with the timekeeping
requirement.

Chosen as virtualization candidate with big expectations, the paravirtualized clocksource offered
by KVM and named "kvm-clock" should provide unprecedented time accuracy for fully virtualized
hosts. It proved instead a source of time instability, as the baselines published in the Results-
Attachment document show. Possibly a good technical approach, maybe not mature enough: one of
the reasons to exclude this technology for the scopes of this project.

After failed trials with kvm-clock, the KVM implementation in the POC lab was setup with the
standard virtualized TSC clocksource, producing an acceptable baseline.

The time accuracy trends for KVM during normal daily operation in the POC, something that the
graphs for single tests fail to show, were not very stable. Producing a 24 hours time baseline required
quite some efforts: any load on the systems seemed to impact the clock and should be avoided.

When system benchmarks were run, the disk subsystem using the paravirtualized virtio driver
interfered with the timekeeping in virtualized guests causing more than occasional single peaks but
also relatively structural time drift. If not a purely "timing" issue, KVM had a problem dealing with its
system resources as well.

When the virtualization host was involved, due either to the load influencing timekeeping directly
or making NTP peers temporarily unreachable, the impact on the guests was at its highest level.

4.3.4. THE CRITICALITY OF NTP TIMEKEEPING

The role and importance of the Network Time Protocol to guarantee an accurate timekeeping has
been progressively "discovered" during the analysis phase of this research.

Version 2 Page 48

Virtualization for the RIPE NCC box 4. Outcome and Advice

VMware hints about the capabilities of NTP and recommends it as a good solution for precise
timekeeping into Virtual Machines (ref [1] in the bibliography), with a series of insightful hints not
only for the ESXi Hypervisor.

Looking at time baselines published in Section 8 of the Results-Attachments document, the role of
NTP is very important even on idle systems. Not only the VMware guests show time drift without NTP,
but the physical host of OpenVZ does it too. Both, remarkably, show in less than 48 hours a
comparable time drift, with one of the VMware guests drifting more than the other (a recurrent
situation, might have to do with the CPU core assigned to a VM).

A manual of the Linux OpenSuSE distribution referred to KVM, in one of the scattered sources of
information about kvm-clock (ref [41]) and in contradiction with RedHat sources (ref [42]), suggests :

When using kvm-clock, it is not recommended to use NTP in the VM Guest, as well.

The results of that approach can unfortunately be very disappointing, as another baseline in
Results-Attachment shows: the time drifts away very quickly. If NTP is used instead, the different
instances in host and guests seem to engage in a fight about who knows the best time: an
understandable albeit very unwanted behavior, in fact: kvm-clock is supposed to provide controlled
access to the time structures of the host but then prevent the conflicts, something that has not
happened during this research.

In at least three occasions published among the results, during Network tests in OpenVZ and
Combined tests in VMware, a correlation between a "good" server (the time monitoring node) and
misleading "bad" servers (the active NTP servers made hard to reach by network load) clearly shows
that NTP could be the cause of time drift. Faced with information from the "bad servers" ntpd seems
to be causing a wrong correction that affects even a physical system like the OpenVZ host (paragraph
6.9 of Results-Attachments).

A VMware guest whose network was kept busy (and maybe disrupted by memory load) during
combined tests, followed the same fate as OpenVZ, with "bad" NTP servers causing drift followed by
relatively fast recovery when "good" query answers were elaborated.

The conclusions drawn by this research that the results published try to demonstrate is that:

when accurate time is critical, a stable source of clock synchronization like NTP is
indispensable. NTP could then become the weakest link in accurate timekeeping.

Well-reachable and stable NTP servers have to be chosen, a path to them should be kept available
for as much as possible (for example by using separate network interfaces or implementing packet
shaping) and a good configuration for the NTP daemon is very important (choosing whether to use
"packet bursts", testing different "polling intervals", etc). Otherwise another clocksource different
than remote NTP servers should be used.

Version 2 Page 49

Virtualization for the RIPE NCC box 4. Outcome and Advice

4.4. RESOURCE SEPARATION

The following paragraphs contain conclusions about the resource separation requirement.
Extended results are published in the Results-Attachments document where the Comparative Graphs
probably provide the best figures of resource separation in a graphical form, while Full Results Tables
can be consulted for further verification.

However the following results attempt to summarize the results, knowing more details about the
extent of the tests, the kind of results available and the main use cases employed may be necessary
for their interpretation. Such information is present in the Introduction of the Results-Attachments
document and with a general overview in Section 3 of this document, paragraph 3.6.

4.4.1. VMWARE VSPHERE HYPERVISOR (ESXI)

CPU

To the extent of the test executed, the CPU performance reported by different types of
benchmarks appeared stable and well balanced among ESXi Virtual Machines.

In case of simultaneous benchmarking of two guests, both reported similar CPU performance,
close to their baseline performance.

In case of competing usage of the CPU by using Logical Cores during simultaneous benchmarks:
each guest show a better performance than the baseline power of the physical cores, with one guest
gaining light advantage (5%). Possibly the Turbo Boost technology provided the additional power.
Paragraph 4.8.1 has more details, the comparative graphs providing such information are published in
Paragraph 2.4 of the Results-Attachment document.

DISK

Simultaneous DISK benchmarks on VMware ESXi always show little imbalance between guests,
with one guest taking longer (around 25%) to complete. The slower guest has the worse performance.

During simultaneous benchmarks the slower guest takes almost twice than during the standalone
benchmark to complete. By concurrent activity, the shared disk I/0 resource feels the load and loses
performance in slight favor of one guest; however, both guests retain more than 80% than their
performance scores than in standalone tests, indicating acceptable resource separation.

VMware generally offers a stable split of resources, but the overall disk I/0 performance of a guest
at any time seems relatively poor compared to that of a physical host not using virtualization. This is
more visible during the more extended benchmarks of Stage 1.

Version 2 Page 50

Virtualization for the RIPE NCC box 4. Outcome and Advice

MEMORY

A VMware guest, in standalone MEMORY benchmarks, shows excellent performance, around 80%
of the native performance of a physical host. In a simultaneous test the performance drops at about
an equally split 75% of the baseline on both guests, showing good resource separation. The
simultaneous test duration is about 40% longer than the standalone test, on both guests.

Memory comparative graphs and test duration are published in Section 5 of Results-Attachments.

NETWORK

The complete abstraction of the network stack of the VMware ESXi hypervisor (with virtual
switches and a number of other facilities) produced an excellent separation between network
resources of different VMs.

With the exception mentioned in paragraph 4.4.4: the impact of network load on one guest is not
directly visible on the other in terms of round trip time or packet loss for example.

Of course the maximum bandwidth of a physical network interface cannot be exceeded, but the
hypervisor, in a way remembering packet shaping, seems to always make sure to leave some
bandwidth available to its guests and keep them separated and reachable. Advanced Packet Shaping
with reservation of specific network resources, is also possible (ref [20] in bibliography).

4.4.2. OPENVZ

CPU

The CPU performance of an OpenVZ container appeared higher during a standalone benchmark.
During some simultaneous benchmarks, one of the containers had slight advantage on CPU
performance(less than 5%), but in general CPU resources were well balanced among the containers.

In case of competing CPU usage by using Logical Cores, during simultaneous benchmarks, each
guest retained the baseline power of the physical cores, lower than during the standalone test but
balanced among guests.

When the virtualization host was loaded in combination with a guest, the guest kept almost the
same power like when standing alone, with a 5-10% loss in some cases. In case of competing CPU
usage with the guest being assigned physical and Logical Cores, it gained advantage on the host. The
host of OpenVZ appeared to properly control its CPU usage to guarantee the power to the guest.

DISK

During simultaneous disk benchmarks, OpenVZ guests show only little unbalanced performance at
both stages of tests. Remarkable is that the performance between the standalone benchmarks and
the simultaneous benchmarks falls of about 35% in the worst case.

Combined disk performance does not seem to be the strongest point of OpenVZ and that may be
due to the shared file system between guests and host. But the duration of simultaneous disk

Version 2 Page 51

Virtualization for the RIPE NCC box 4. Outcome and Advice

benchmarks on both guest is practically equal, at around 30% more than the standalone test,
indicating some reasonable resource separation.

When simultaneous disk benchmarks are run on one guest and the virtualization host, their
general duration becomes extreme: about 90% more than the standalone test duration (the longest
benchmark for a guest lasted 7h20m, versus a standalone test duration of 3h17m).

Concerning the performance, the virtualization host only has limited impact on a guest. While the
host performance remains understandably similar to that of a physical host, its guest remains at a

value similar to when it was competing with another guest.

An OpenVZ container in the standalone benchmark seems to reach 60/80% of the native disk
performance of its host, but not 100%. Comparative graphs for disk benchmarks are published in
Section 4.4 of the Results-Attachments document.

MEMORY

Standalone MEMORY benchmarks on one OpenVZ container report at least in a case much lower

performance than a physical host.

During simultaneous tests, both the containers tested show an equally low performance, so:
resource separation is good, albeit at a cost in terms of performance.

When virtualization host and one container are benchmarked, the guest maintains a performance
similar to the simultaneous test with another guest.

NETWORK

In OpenVZ there is no network resource separation observed. All containers, whose network
interfaces are bound to a physical interface on the host, feel the impact of network load equally: when
one interface is flooded (like as a consequence of a DDoS attack), that causes longer round trip times
reaching all containers.

The lack of network resource separation also includes the virtualization host: network load on the
host is equally felt by the containers, however in OpenVZ the containers always tend to remain
minimally reachable and little or no packet loss is observed, even if their host is flooded with traffic.

A fine-tuned packet shaping solution using available tools for Linux might help prevent interfaces
to be fully flooded by controlling outbound flows and assigning fixed bandwidth to specific container

interfaces or to specific services.

Using a separate network interface for specific containers or binding only the "vulnerable"
virtualization host to a separate interface are also good options, useful for example for the host to
reach the NTP servers independently from the network traffic on the guests.

Version 2 Page 52

Virtualization for the RIPE NCC box 4. Outcome and Advice

4.4.3. KVM

CPU

Considering the results of CPU benchmarks only, the performance of two guests during
simultaneous benchmarks appears balanced, also looking at test duration.

When the virtualization host is involved running simultaneous CPU benchmarks with a guest, there
is negative imbalance: the host causes the guest to take 30-35% more to complete the benchmarks,
with lower performance on some CPU intensive benchmarks. An initial indication that the use of the
KVM host for CPU intensive operations may not be the recommended option.

DISK

In the standalone DISK benchmarks, KVM guests during stage 1 testing show a surprisingly low
performance compared to their own host: less than 30%, despite using the paravirtualized virtio
driver. The resource separation appears good during simultaneous benchmarks, though.

When simultaneous tests are run on the virtualization host and one of the guests, the
performance of the latter drops even more dramatically, to less than 20% than that of a physical
system. By empirical observation the KVM guest was unresponsive when the disk benchmarks were
running on its host.

Concerning test durations: during simultaneous testing of the guests, the second guest, albeit the
benchmarks reporting similar scores, takes one additional hour to complete the test.

MEMORY

The MEMORY performance reported by a standalone benchmark on a guest of KVM seems the
same as that of the physical host. When two guests are benchmarked simultaneously, the
performance drops to 75-70% , respectively: an acceptable split between guests.

When the host is tested with one of its guests, KVM shows its best: the memory performance of
the host drops to about 50%, while the guest keeps the same performance as in the other
simultaneous test. Duration of all simultaneous tests is a little less than double the standalone test.

NETWORK

Also in KVM all network interfaces of the virtual machine are bound to one or more physical
interface on the host. The effect of network load on any guest or on the host is felt practically at the
same way by all virtual machines and by the host. KVM has no separation of network resources.

In KVM, the host deserves more protection or an entirely separate network interface because of
its very powerful and uncontrolled network stack: intensive traffic to the virtualization host can make
all guests unreachable. This is an important remark when considering whether to use the virtualization
host for production services, a choice that is not recommended.

Version 2 Page 53

Virtualization for the RIPE NCC box 4. Outcome and Advice

Section 6 of the Results-Attachments documents reports the results of network tests.

Also in this case a well tuned Packet Shaping configuration could improve the situation and
prevent risks: such a solution is recommended when implementing KVM.

4.4..4. THE INTERFERENCE BETWEEN MEMORY AND NETWORK IN HYPERVISORS

Largely documented and repeatable test results have shown an unexpected phenomenon of
resource interference between memory and the network stack.

On both hypervisor solutions (KVM and VMware), any high load applied on the memory caused an
added delay on the entire network stack of the hypervisor, apparently affecting all interfaces of all
Virtual Machines, certainly in VMware.

In the ESXi hypervisor, that was worst affected and more broadly tested for this issue, the memory
load is confirmed during combined tests to:

* cause aslightly increased delay between 1 and 2 milliseconds to the network stack
* cause a clear and remarkable drop in inbound network bandwidth generated by iperf.

This issue also had a clear impact on the NTP activity for timekeeping during memory benchmarks,
at least in VMware. The Results-Attachments document shows in Section 5 and 7 a number of cases
and relative monitoring graphs.

The network bandwidth drop that was registered might be due to the implementation of the
software packet generator iperf rather than to the Hypervisor. This aspect will need to be further
checked.

It also has to be said that the memory load causing this issue is artificially very high due to the
tests that are executed: much higher than on an average production system.

Depending on the application, and assuming the memory bus is seldom loaded to the extremes, 1
or 2 milliseconds delay on the network may not be a big issue. But when Internet Measurements are
involved, for example in an Atlas Software probe, one millisecond or a less reliable inbound bandwidth
to the probe can make a difference. It is not up to this research but to developers and management
involved with the RIPE ATLAS project to speculate further about the acceptable impact.

This research has not found the cause of this issue. An extra investigation on cause and full extent
of this resource interference and on methods to prevent it are deemed necessary.

Since the commercial VMware vSphere Hypervisor is a product actively used at RIPE NCC and if
this issue is present there, too, VMware support could be contacted for clarifications.

From a technical perspective, different configurations of the ESXi 5.1 Hypervisor could be tested,
like using a different network driver than VMXNET3 for the Virtual Machines. Other tools than iperf
could be employed to check if the inbound bandwidth disruption is real or limited to iperf.

Version 2 Page 54

Virtualization for the RIPE NCC box 4. Outcome and Advice

4.5. SCALABLE MANAGEABILITY

Scalability and manageability of virtualization candidates could be observed during the setup of
the POC lab and thanks to the experience and the information acquired before and during this project.
The following paragraphs will attempt to summarize that information.

4.5.1. VMWARE VSPHERE HYPERVISOR

The freely available ESXi Hypervisor by VMware scores very good in terms of manageability and
scalability, despite only offering a subset of the possibilities of other commercial products from
VMware.

Commercial additions to the standalone ESXi are beyond the scope of this project, but they are on
the market and can be a safe haven in case of need, for example: product support can be acquired on
top of a free ESXi license.

The ESXi hypervisor could be installed on remote RIPE NCC box nodes through a semi-automated
process involving a shared disk resource, an ISO image and a configuration file (ref [16] in the
bibliography). The Hypervisor could be firewalled (ref [20]) and once installed it could be managed
through the vCLI tools from a Linux command line (ref [22]).

Use of the graphical management interface for any special configuration, if necessary, could be
reduced to the minimum with the experience, and performed from remote from a Windows Virtual
Machine in the meantime.

Standard Virtual Machines prepared earlier, for example with a preinstalled Atlas software probe
on them, could be imported using the ovftool (ref [14]). Once up and running with the virtual
machines deployed, the Hypervisor might practically never need to be accessed anymore unless to
upgrade it to a new version.

In one word: the ESXi hypervisor works resiliently, without much intervention or particular
maintenance needed.

There is no "usable" virtualization host to maintain and configure in ESXi, however the Hypervisor
itself can be limitedly reached through ssh. Support for using standard Linux facility like cfengine or
even ssh keys is not present, but often no modification is necessary on the Hypervisor itself. An SNMP
daemon can be started on it for limited monitoring.

ESXi products are already in use at RIPE NCC: one last positive aspect in terms of experience
among internal engineers, existing contact with VMware, future integration possibilities and so on.

Version 2 Page 55

Virtualization for the RIPE NCC box 4. Outcome and Advice

For the RIPE NCC box, probably the most relevant limitation of the freely available "vSphere
Hypervisor" could lie in its license (treated in paragraph 4.8.3).

4.5.2. OPENVZ

The manageability score of OpenVZ is overall good. However, the total cost of ownership is quite
higher than that of VMware: a Linux system must be installed, configured and maintained as well as
rules for automatic management with tools like cfengine.

OpenVZ needs a pre-existing Linux system and then an external kernel on top of it but it is offered
as an all-in-one solution. For an open source product it has a consistent central resource for
documentation, support and upgrades (ref [30]).

When using a supported Linux distribution, like CentOS, once the OpenVZ kernel and tools are
added to the system then setting up the first containers is straightforward (about 10-15 command
lines to be up and running). No extensive tweaking of the Linux host system is needed. Most if not all
deployment operations can be automated.

During this research, the OpenVZ setup required little or no intervention after the initial
configuration, and could easily be ported to another host by just copying all relevant files.

The use of (customized) container templates makes deployment of a new service very easy and
that can also be automated through cfegine, having care to deploy both system template, container
configuration and network configuration at the same time. System engineering activities on the
containers may be easier thanks to shared process resources and shared disk space with the host.

The virtualization host needs to be protected from unwanted access, eventually by a firewall setup
that could use iptables. Packet shaping may also need to be implemented on the host, together with
other desired utilities, adding up to the total cost of ownership.

The biggest limitation in the scalability of OpenVZ is that containers may only run Linux
distributions using the vzkernel, precluding the deployment of non-Linux services in the future.

4.5.3. KVM

The scalability and manageability score of KVM is mediocre and has also influenced the choice to
not recommend this technology. Like mentioned in Section 3, the modular nature of KVM with
resources, development and support scattered in different places and with different owners make it a
quite wasteful solution, however RedHat Inc. centralizes much information and maintains many tools.

In case of a technical issue or a bug, finding specific support may be tricky. Also the risk exists, like
for many opensource products, that any of the components of KVM is less/worse maintained than
others. Upgrades seem bound to the respective maintainers.

Version 2 Page 56

Virtualization for the RIPE NCC box 4. Outcome and Advice

KVM requires a pre-installed Linux host and an amount of configuration on the virtualization host
similar to OpenVZ, but KVM is fully integrated in many standard Linux distributions like CentQS,
facilitating the deployment. Differently than with OpenVZ, KVM also requires the disk resources for
the guests to be prepared. A number of extra parameters of the system may need to be checked and
tuned to the necessities of the KVM guests.

KVM may run any kind of system in a VM. It supports importing OVF images but also many more
or less scalable or otherwise "raw" methods to import virtual machines, for example the use of LVM
snapshots. This of course has technical advantages and may have scalability disadvantages.

Use of libvirt makes deployment of new virtual machines and setup of the platform easier with
commonly available command line and graphical management tools. Ad-hoc setting and tweaking of
specific configurations may be needed from time to time to overcome bugs or limitations.

KVM and its guests are fully customizable, like the Linux system on which they run. It is up to the
engineer implementing it to choose every technical configuration detail, from the processor to
emulate to the I/O driver to use. This can be at the same time a big advantage and a disadvantage
especially if slightly different, ad-hoc solutions have to be tested and are implemented in remote
nodes. And have to be documented and maintained for years to come.

4.5.4. THE MIXED BLESSINGS OF A VIRTUALIZATION HOST

The OpenVZ and KVM technologies both run on top of a full-fledged Linux server, the
"virtualization host". The virtualization host needs to be installed, configured, managed, protected and
it is of course essential that the host stays stable so that its virtualized guests remain stable.

In case of a RIPE NCC box using any of the two mentioned technologies the virtualization host
needs to be deployed and maintained remotely, adding complexity. Many operations related to
remote maintenance can be automatically executed by tools like the one used at RIPE NCC, cfengine.

The virtualization host is expected to have performance and timekeeping of a physical server and
does not suffer from the possible limitations of a virtualized guest. Some of those features have been
tested by this research. One of the extra questions asked during this research was whether the
virtualization host could be used for production services, like to host a RIPE ATLAS software probe or
as Atlas measurement target.

System benchmarks but especially network tests results have shown clear limitations and risks
connected to the use of the host, the most remarkable of which are listed below. This research
recommends to not use the virtualization host for production services and to protect it through firewall
rules instead, for access only by RIPE NCC. Other suggestions detailed in paragraph 4.7 could be to
implement network packet shaping on the host to govern traffic bursts, or to bind the virtualized
guests on a separate network interface that the one used by the host.

* In its standard setup OpenVZ containers share the process table and the filesystem
between hosts and guests. A faulty "killall" command executed in the host or a faulty or

Version 2 Page 57

Virtualization for the RIPE NCC box 4. Outcome and Advice

malicious file deletion or modification may damage the containers, if the host is
compromised. Access to the host should then be strictly controlled if using OpenVZ.
Experimental versions of OpenVZ support an optimized loop file system (called ploop) that
allows to run the containers from inside an image file, a very limited protection from
having all files directly exposed if the image can be encrypted.

* The virtualization host, in the tested implementation of KVM, works in many ways as a
standalone physical system. CPU and especially Disk and Memory load on the host may
severely compromise the performance of the guests that run on it as user processes under
the gemu virtualizer. The network stack of the host does not seem to limit itself in any
way: if just the IP address of the host is flooded with traffic, all guests may become
unreachable or register packet loss, as network tests have shown. Limiting system and
network load on the KVM host to the strict necessary is recommended.

4.6. ADDITIONAL REQUIREMENTS

4.6.1. "SCALABLE UPDATES" (DIFFERENT KERNELS ON EACH GUEST)

Full virtualization solutions (VMware ESXi and KVM) offer the possibility to install any operating
system in a guest, allowing entirely separate upgrade patterns. OpenVZ is bound to its container
model and unfortunately fails this requirement.

According to its documentation, OpenVZ can run another Linux Distribution on a container (like
Ubuntu or Debian) based on a pre-built container template. A container appears as a standalone
system, can be used and upgraded like a physical system, but it is limited to run under the vzkernel.

4.6.2. COMPLIANCE WITH EXISTING RIPE NCC SERVICES

The simple requirements for running existing RIPE NCC services (see paragrah 2.5.2) are met by all
virtualization candidates.

All guests can run CentOS Linux with one network interface named "eth0" with most
functionalities of a physical interface (tcodump captures, iptables, IPv6). Unlike KVM and VMware,
OpenVZ guests need to be configured ad-hoc with "veth" interfaces disabling the default point-to-
point veneth interface.

Further no other requirements for the RIPE NCC box to support existing RIPE NCC services have

been provided to this research.

Version 2 Page 58

Virtualization for the RIPE NCC box 4. Outcome and Advice

4.7. OUTCOME AND FINAL ADVICE

Among the virtualization candidates tested, the VMware vSphere Hypervisor 5.1 (ESXi)
has demonstrated the highest and most consistent level of stability and compliance to all
requirements of this research.

System resources appeared very tightly managed and shared across the Virtual Machines, with a
possibly consequent lower performance that should not impact the needs of RIPE NCC box services.

Network resources also appeared separated and well managed in the vast majority of cases, with a
VM remaining reachable even when the other was subject to the highest possible network load.

Regarding manageability, the ESXi Hypervisor is without doubts the best solution for possibly care-
free and easy deployment and maintenance of several remote nodes with the lowest possible total
cost of ownership.

The standardized solution from VMware allows implementing the RIPE NCC box with a minimal
amount of customized and ad-hoc engineering solutions, something that has made the management
of certain legacy services (like TTM) time and resource consuming and bound to few single engineers
that had the knowledge on them.

For an Hypervisor, timekeeping in ESXi was accurate and stable in a vast number of load cases,
however it cannot be considered strictly compliant with the 1ms requirement at all times.

The other biggest drawback of the ESXi was the interference between high memory load and the
network stack.

OpenVZ makes the second best choice, offering acceptable performance in many fields and an
acceptable degree of compliance to the requirements except for network resource separation, a
limitation that can be overcome by separating different services, binding their containers to different
network interfaces.

A bit of a disappointment, the performance of system resources in an OpenVZ container did not
appear to be near-native as it was expected to be.

This research will not be able to provide a direct advice for the implementation of either
of the virtualization technologies tested for the RIPE NCC box, as neither of them can be
guaranteed 100% compliant to all requirements.

Version 2 Page 59

Virtualization for the RIPE NCC box 4. Outcome and Advice

It is a conclusion of this research that a virtualized guest can host an Atlas Anchor node
and other services on the RIPE NCC box, but that is subject to certain conditions and
potential compromises to evaluate.

Some initiatives could be taken in the short term to fully understand and react to the remaining
aspects that condition the choice of a virtualization technology versus the other. Longer term action
related to the very design of the RIPE NCC box should be considered before a broad deployment.

4.7.1. SHORT TERM ACTION

The first short term action this research would advice is to have the Legal Department at RIPE NCC
to check the effective legal usability of the ESXI hypervisor at no extra costs on "RIPE NCC box" nodes.
Paragraph 4.8.2 below has more details.

Furthermore, the resource interference between memory and the network stack shown in Section
5, and confirmed in Section 7 of the Results-Attachments document and described in paragraph 4.4.4
in this document, may form a serious technical impediment for the use of the VMware ESXi hypervisor.

On the short term, partially quoting paragraph 4.4.4, additional research is necessary to:
* Further investigate and clarify the extent of that issue.

* Make clear if, beyond the tiny network delay, an inbound bandwidth drop is a consistent
consequence of the issue or is only related to iperf.

* If the issue cannot be solved by a fix or different settings on the Hypervisor, consider
designing and implementing technical mechanisms to prevent or counteract the root
cause (the memory overload).

If the memory issue, licensing limitations or other reasons remain strong enough to exclude
VMware as potential candidate: OpenVZ virtualization can be used in the RIPE NCC box instead, with
the recommended safeguard of using a separate network interface for the virtualization host, carrying
management and NTP traffic.

OpenVZ can be the best short term solution to put the RIPE NCC project quickly on wheels

The existing nodes that are currently been deployed for the Atlas Anchors pilot project with
CentOS Linux can be very easily reconfigured (also automatically, using cfengine) to run the vzkernel of
OpenVZ and a number of container templates installed on them.

Version 2 Page 60

Virtualization for the RIPE NCC box 4. Outcome and Advice

4.7.2. LONG TERM PERSPECTIVE

Another finding of this research, and in particular of Network and Combined tests, is the criticality
of the NTP mechanism for time synchronization described in paragraph 4.3.4.

During the research, the "timekeeping stability" requirement was further specified to admit a
maximum drift of 1ms. No virtualized guest neither a physical system based on a standard clock
oscillator can guarantee such accuracy in the long term without an extra synchronization mechanism.
The Test Traffic Measurements project has taught that lesson several years ago; some Time Baselines
in Section 8 in Results-Attachments confirmed it.

In the currently known design, the RIPE NCC box would use NTP peers for time synchronization.
Once again the TTM project had pinpointed some of the limitations of NTP. This research tried to
underline the importance of network resource control and a stable network stack for the NTP
mechanism to be effective.

The nodes of the TTM project, a precise GPS time source during this project, are going to be
further decommissioned in 2013. The measurements of RIPE ATLAS are admittedly bound to a lower
precision than TTM measurements could achieve since Atlas Probes themselves do not have a stable
clock.

The next questions could be: what is the level of compromise in time accuracy that the
Science Division considers acceptable for the RIPE NCC box?

For the long term perspective, the advice this research would like to convey is to reconsider design
and strategies for the RIPE NCC box project.

* If occasional drift beyond the 1ms limit can be tolerated, either the VMware ESXi (once
the memory issue is solved) or OpenVZ can be used, with a number of stratum 1 NTP
servers carefully configured in each Virtual Machine or in the virtualization host,
respectively.

e |f the RIPE NCC box and the Atlas Anchor node hosted inside it cannot tolerate more than

1ms drift at any time, a different technical solution has to be envisaged.

o Using a separate network interface on the RIPE NCC box for management and time
synchronization remains a good compromise.

o If a second interface cannot be used, relying on careful packet shaping might be a
customized alternative to make sure the total bandwidth used is kept under
control and NTP traffic retains some priority, albeit this could be an even more
expensive solution in terms of scalability and could not be entirely succesful.

Version 2 Page 61

Virtualization for the RIPE NCC box 4. Outcome and Advice

If none of the above is acceptable, depending on budget and targets of the project another time
synchronization solution should be thought of for the RIPE NCC box. A number of products present on
the market offer some options: from tiny GPS antennas able to receive a signal with minimal coverage
and easier to hook up to a virtualization host than past solutions (in this case, not using the ESXi
Hypervisor), to using ultra-precise time synchronization appliances.

4.8. ADDITIONAL REMARKS AND SIDE NOTES

This research has tried to give answer to one main question but has in fact given a wider
perspective of the virtualization technologies that were tested, by running a large amount of tests.
Many of the results produced are shown or explained between this document and the Results-
Attachments document, however unfortunately not all fields could be tested and not all results could
be properly reported because of limited time and space. A few relevant remarks and side notes will
conclude this section.

4.8.1. CPU HYPER-THREADING AND TURBO BOOST FEATURES

Hyper-Threading and Turbo Boost are performance features of modern Intel CPUs. Hyper-
Threading allows the split of physical cores into two Logical Cores, with the processor performing the
scheduling. With Turbo Boost the processor can temporarily and dynamically increase its nominal run
frequency running faster (like an overclocked processor) when the system needs more power.

VMware recommendations suggest to leave the Turbo and Hyper-Threading features enabled as it
is by default. The guests on the ESXi hypervisor have shown similar performance in Unixbench tests
with or without Hyper-Threading, with a clear advantage between 10 and 30% when also logical cores
are allocated to virtual machines (page 20 in Results-Attachments). It is advised to allocate both
physical as well as logical cores for the VMs. The performance of ESXi guests does not improve
dramatically when the processor Turbo Boost is enabled, remaining similar as when it was disabled.

CPU and Hyper-Threading can be left enabled with OpenVZ virtualization. The performance of
both OpenVZ containers increases up to 25% when both Turbo Boost is enabled and Hyper-Threading
Logical cores are used , that is the recommended choice. By only enabling Turbo Boost the guests can
perform 15% faster. Also in OpenVZ both containers in the POC lab gained clear advantage by
allocating Hyper-Threading Logical Cores to them, as if they were physical cores. In any cases with no
overcommitting both containers maintained a good CPU resource subdivision.

No different Hyper-Threading scenarios have been tested in KVM. Informal information suggested
to disable the Turbo Boost feature (and that has been done in the POC lab) to prevent KVM to face
unexpected changes in the clock rate of the processor at any time.

Version 2 Page 62

Virtualization for the RIPE NCC box 4. Outcome and Advice

4.8.2. ABOUT THE VSPHERE HYPERVISOR LICENSE

The VMware vSphere Hypervisor 5.1 (ESXi) can be freely downloaded from the website of VMware
and a maximum number of 999 licenses can be obtained for use in physical servers with up to 32Gb of
Ram Memory.

One article of the EULA of the product governs the "Hosting Rights and Restrictions" and may
clarify whether the product can effectively be used without any additional fees for "RIPE NCC boxes"
hosted at remote locations, administered by Gll and hosting services of the Science Division, or not.

A relevant excerpt of the mentioned section of the EULA in effect at the moment of writing is
qguoted below "as is" strictly for informative purposes. It may be subject to change and does not
constitute any definitive information from VMware, Inc. if the vSphere Hypervisor 5.1 is chosen for
the RIPE NCC box, the legal department of RIPE NCC may want to check the entire licensing terms and
eventually seek contact with VMware.

2.2 Hosting Rights and Restrictions. Notwithstanding anything to the contrary in this EULA, You may use the

Software to deliver “internally developed applications” as a service to third parties via an internal or external
network. An “internally developed application” is: (i) a computer application that You have created or
developed, and (ii) a third party computer application(s) that (a) is ancillary to your application-based

service, and (b) cannot be accessed directly by end users of your application-based service. [..]

Excerpt VMWARE END USER LICENSE AGREEMENT.

4.8.3. ABOUT THE HARDWARE SPECIFICATION

This research received the hardware specifications for an R320 rack mountable server from Dell
that corresponds to the model proposed for the Atlas Anchor Nodes pilot project. The full specification
is published in the Results-Attachments document. Two servers of the same type have been used and
tested in the POC Lab and the same systems could be certainly used for the RIPE NCC box.

What is found during the tests is that the memory performance of the model proposed is worse
than the earlier R310 model used for RIS boxes: the memory chosen has the best speed (1600Mhz)
while the processor has a lower bus frequency (1333).

The current specification proposal counts one CPU with 6 cores. Using a higher number of cores
(for example: 8) for the RIPE NCC box hardware could increase the virtualized guests that can run on it
without resource overcommit. 8 cores CPUs for the R320 model use a faster 1600Mhz bus speed but
that comes at an higher cost between 800 and 900€ retail price at the moment of writing, that may
not make the upgrade a good choice.

Version 2 Page 63

Virtualization for the RIPE NCC box 4. Outcome and Advice

4.9.

OPEN QUESTIONS

This paragraphs presents a list of untreated subjects, open questions and unresolved issues

related to this research:

Network delay caused by memory load. The biggest open question concerns the
correlation between heavy memory load and network delay in full hypervisor solutions,
and in particular in the VMware ESXi hypervisor, treated in paragraph 4.4.4 and 4.7.

kvm-clock. Extensive attempts have been made, many are unaccounted in this report, to
pinpoint the cause of the disappointing instability of the kvm-clock paravirtualized
clocksource of KVM. A bug to the CentOS/RedHat kernel development could be filed about
that. It remains an open question whether the instability was related in some ways to a
kernel bug or to an implementation issue.

CPU overcommitment. Based on the preparatory phase, an assumption has been made
about a limited number of services expected to run on a RIPE NCC box, possibly no more
than three or four in some years. The minimum requirement for the services often
referred to two CPU cores. At this embryonic phase the RIPE NCC boxes with the current
hardware specification (same as for Atlas Anchor Nodes) were assumed to not need over
commitment of CPU resources (i.e. allocating to virtualization guests more CPU cores than
physical cores available). CPU overcommitment has not been treated by this research.

CPU pinning. A feature that is instead researched and implemented but only during initial
trials (especially when testing with kvm-clock) is CPU pinning, or assigning specific CPU
cores to specific VMs. After feedback from Gll engineers about the scalability of pinning
and seen the limited number of services expected to run initially on a RIPE NCC box, the
use of this feature was not considered critical to this research. That became especially true
when CPU cores automatic allocation and resource separation appeared well supported by
the virtualization candidates.

Both VMware and KVM seamlessly support pinning of CPU physical or logical cores.
OpenVZ does not support pinning but supports setting hard limits on the CPU resources
assigned to the guests by using the "cpulimit" option. A number of unaccounted tests
during this research have shown the "cpulimit" option to be very effective.

Packet Shaping (or Linux Traffic Control) on Linux Virtualization hosts using the tool tc can
be implemented to improve resource separation or form a certain protection against
network overflow, useful for example for those candidates with no network resource
separation like OpenVZ. The VMware ESXi hypervisor also offers packet shaping facilities.
No packet shaping solutions have been tested by this research.

IPv6. basic support of all virtualization candidates for IPv6 is checked, all hosts and guests
in the POC lab had IPv6 addresses assigned, further this research did not perform any test
using IPv6.

Version 2

Page 64

Virtualization for the RIPE NCC box 4. Outcome and Advice

* Jumbo Frames. Support of the virtualization candidates for Jumbo frames (i.e. Ethernet
frames bigger than the standard MTU of 1500 bytes and up to 9000 bytes big) has not
been checked. The request about this feature came from potential hosting partners but
the support for it at this stage on the RIPE NCC box was considered premature.

* VLAN tagging. There was one proposal to check and eventually test the support of the
virtualization candidates for 802.1q VLAN tagging, in case multiple guests of a RIPE NCC
box sharing the same network interface would need to reside on different VLANs. CentOS
Linux (the host of OpenVZ and KVM) supports VLAN tagging natively. The VMware ESXi
also fully support VLAN tagging for its VMs. This feature was not tested as also considered
premature at this stage.

4.10. VIRTUALIZATION PROTOTYPE AND FUTURE OF THE POC LAB

Two working prototypes of the RIPE NCC box on Dell R320 hardware have been left installed with
respectively the VMware vSphere Hypervisor 5.1 and OpenVZ virtualization in the POC lab, with two
guests running on them. They remained available to Gll together with monitoring host and time
monitoring node for further testing and access to test results.

Full support is offered to the manager Gll for knowledge transfer to system engineers about the
continued use of the POC lab and of the entire testing and monitoring infrastructure should further
trials and tests for the RIPE NCC box need to be performed in the near future.

Version 2 Page 65

Virtualization for the RIPE NCC box 5. Bibliography

5. BIBLIOGRAPHY

Next to articles, papers and documents consulted as reference, the bibliography also contains links

to single relevant reference web pages consulted, like Knowledge Base articles or Documentation
pages of products or software used in this research. The latter two are indicated by the prefix [Ref]
and are mentioned as an helpful reference for the implementation of the solutions used in this
document.

This project has made extensive use of all sorts of Web resources, also as implementation
reference. As common by web resources, not all information sources can be fully accounted or
considered authoritative for the information that they provide. All documents, trademarks, company

names belong to their respective authors or owners.

URLs specified in this Bibliography are openly listed by search engines and freely reachable as of
January 2013. They are reported 'as-is' without guarantees of any kind and without any implied
responsibilities about the status or reason of their publishing on the web at the given addresses.

NTP and Timekeeping

[1] Timekeepng in VMware Virtual Machines, VMware INC
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf

[2] RFC 5905 - Network Time Protocol Version 4 -
http://www.ietf.org/rfc/rfc5905. txt

[3] David L. Mills, Internet Time SynchronizationL The Network Time Protocol, 1991, IEEE
http://www.cs.sunysb.edu/~jgao/CSE590-springll/91-ntp.pdf

[4] Clock Jitter and Measurement, SITime, 6 February 2009
http://www.sitime.com/support2/documents/AN10007-Jitter-and-measurement.pdf

[5] Various Authors, PC Based Precision Timing Without GPS
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.4804&rep=repl&t
ype=pdf

[6] Various Authors, Precision Synchronization of Computer Network Clocks
http://www.eecis.udel.edu/~mills/database/papers/fine.pdf

[7] Svein Johannessen, Time Synchronization in a Local Area Network
http://www-lar.deis.unibo.it/people/crossi/files/SCD/Time synchronization
in a local area network.pdf

[8] Various Authors, Integration of high accurate Clock Synchronization into Ethernet-based

Distributed Systems
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5588&rep=repl&t

ype=pdf
[9] [Ref] NTP Documentation Archive - http://doc.ntp.org/

[10] [Ref] Monitoring and Controlling NTP
http://support.ntp.org/bin/view/Support/MonitoringAndControllingNTP

[11] [Ref] NTP Timestamp Calculations http://www.eecis.udel.edu/~mills/time.html

Version 2 Page 66

Virtualization for the RIPE NCC box 5. Bibliography

[12] [Ref] http://support.ntp.org/bin/view/Servers/StratumOneTimeServers
VMware ESXi
[13] What's New in VMware vSphere 5.1 Performance, VMware Inc.
http://www.vmware.com/files/pdf/techpaper/Whats—-New-VMware-vSphere-51-
Performance-Technical-Whitepaper.pdf
[14] Performance Best Practice for VMware vSphere 5.0, VMware Inc.
http://www.vmware.com/pdf/Perf Best Practices vSphere5.0.pdf
[15] OVF Tool User Guide, VMware
http://www.vmware.com/support/developer/ovf/ovfl0/ovftool 10 userguide.pdf
[16] [Ref] KB 2004582 - Deploying ESXi 5.x using the Scripted Install feature, VMware Inc.
http://kb.vmware.com/selfservice/microsites/search.do?language=en US&cmd=di
splayKC&externalId=2004582
[17] [Ref] KB 1006427 - Timekeeping best practices for Linux Guests, VMware Inc.
http://kb.vmware.com/selfservice/microsites/search.do?language=en US&cmd=di
splayKC&externalId=1006427
[18] [Ref] KB 1005092 - Troubleshooting NTP on ESX and ESXi, VMware Inc.
http://kb.vmware.com/selfservice/microsites/search.do?language=en US&cmd=di
splayKC&externalId=1005092
[19] [Ref] KB 1017910 - Using Tech Support Mode in ESXi 4.1 and ESXi 5.x
http://kb.vmware.com/selfservice/microsites/search.do?language=en US&cmd=di
splayKC&externalId=1017910
[20] [Ref] KB 2005284 - About the ESXi 5. firewall
http://kb.vmware.com/selfservice/microsites/search.do?language=en US&cmd=di
splayKC&externalId=2005284
[21] [Ref] Traffic Shaping with VMware ESX Server
http://www.petri.co.il/traffic shaping with vmware esx server.htm
[22] [Ref] vSphere Command-Line Interface Documentation
http://www.vmware.com/support/developer/vcli/
[23] [Ref] vSphere Management Assistant
http://www.vmware.com/support/developer/vima/
[24] [Ref] vSphere 5.1 Documentation
http://pubs.vmware.com/vsphere-51/index. jsp
[25] [Ref] Memory management techniques in VMware vSphere
http://expertpandas.com/blog/index.php/memory-management-techniques-in-
vmware-vsphere/
[26] [Ref] How to update ESXi server to ESXi 5.1
http://www.v-front.de/2012/09/how-to-update-your-free-whitebox-esxi.html
OpenVZ
[27] Kirill Kolyshkin, Virtualization in Linux, OpenVZ
http://download.openvz.org/doc/openvz-intro.pdf
[28] Various Authors, Container-based Operating System Virtualization: A Scalable, High-
performance Alternative to Hypervisors -
http://nsg.cs.princeton.edu/publication/vserver eurosys 07.pdf
[29] [Ref] CentOS wiki OpenVZ
http://wiki.centos.org/HowTos/Virtualization/OpenVZ
[30] [Ref] Differences between venet and veth, OpenVZ
http://wiki.openvz.org/Differences between venet and veth
Version 2 Page 67

Virtualization for the RIPE NCC box 5. Bibliography

[31] [Ref] Traffic Shaping with tc
http://wiki.openvz.org/Traffic shaping with tc

[32] [Ref] http://wiki.openvz.org

Kvm

[33] Virtualization Host Configuration and Guest Installation Guide, Red Hat, Inc, 2012
https://access.redhat.com/knowledge/docs/en—

US/Red Hat Enterprise Linux/6/html/Virtualization Host Configuration and Gu
est Installation Guide/

[34] Kernel Virtual Machine (KVM) - Best practices for KVM, IBM
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3rOm0/topic/liaat/liaatbe
stpractices pdf.pdf

[35] Quick Start Guide for installing and running KVM, IBM
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaai/kvminst
all/kvminstall pdf.pdf

[36] KVM Virtualization in RHEL 6 Made Easy, Dell
http://linux.dell.com/files/whitepapers/KVM Virtualization in RHEL 6 made e
asy.pdf

[37] [Ref] Installing a KVM Guest OS from the Command-Line (virt-install), Techtopia
http://www.techotopia.com/index.php/Installing a KVM Guest OS from the Comm
and-line (virt-install)

[38] [Ref] http://www.linux-kvm.org/

[39] [Ref] http://wiki.centos.org/HowTos/Virtualization/Introduction

[40] [Ref] KVM is Linux. Xen is Not.
http://chucknology.com/2012/02/02/kvm-is-linux-xen-is-not/

[41] [Ref] Managing Clock in KVM , opensuse.org
http://doc.opensuse.org/documentation/html/openSUSE/opensuse-
kvm/cha.libvirt.config.html#sec.kvm.managing.clock

[42] KVM Virtual Machine Timing Management, RedHat Enterprise Virtualization for Servers
https://access.redhat.com/knowledge/docs/en—

US/Red _Hat Enterprise Virtualization for Servers/2.2/html/Administration Gu
ide/chap-Virtualization-KVM guest timing management.html
Gnuplot and Monitoring

[43] [Ref] Smokeping http://oss.oetiker.ch/smokeping/

[44] [Ref] Gnuplot - http://www.gnuplot.into

[45] [Ref] http://www.observium.org

[46] [Ref] http://www.cacti.org

Testing and Benchmarking

[47] [Ref] http://www.phoronix-test-suite.com/

[48] [Ref] http://openbenchmarking.org

[49] [Ref] http://iperf. fr

[50] [Ref] http://code.google.com/p/byte-unixbench/

[51] [Ref] http://weather.ou.edu/~apw/projects/stress/

Others - Hardware - OS

[52]

Kempen, Keizer - "Competent afstuderen en stage lopen”, Norshoff Uitgevers 2009

Version 2

Page 68

Virtualization for the RIPE NCC box

5. Bibliography

[53] Using vFlash on iDRAC 6, Dell
http://media.community.dell.com/en/dtc/attach/using vflash on idracé final.
docx

[54] [Ref] http://www.intel.com/content/www/us/en/architecture-and-
technology/turbo-boost/turbo-boost-technology.html

[55] [Ref] http://www.intel.com/content/www/us/en/architecture-and-
technology/hyper-threading/hyper-threading-technology.html

[56] [Ref] Dell Remote Access Controller, DELL
http://en.community.dell.com/techcenter/systems-
management/w/wiki/3204.dell-remote-access—controller-drac-idrac.aspx

[57] [Ref] Everything you need to know about the CPU C-States Power Saving Modes
http://www.hardwaresecrets.com/article/611

[58] [Ref] Libvirt - http://libvirt.org

[59] [Ref] CentOS wiki - http://wiki.centos.org

Version 2 Page 69

