
RIPE Network Coordination Centre
www.ripe.net

Research on RIS Route Collectors

W.A. Miltenburg
RIPE NCC

GII team
Supervisor: C. Petrie

Research on RIS Route Collector!

http://www.ripe.net
http://www.ripe.net

Table of contents
1. ...Introduction! 5

2. ..General information! 6

3. ..RIS implementation and problems! 7

3.1. ..Current implementation! 7

3.2. ..Description of current limitations! 7

4. ...Research methodology! 9

4.1. ...Main question! 9

4.2. ...Process! 9

4.3. ...MoSCoW scheme! 9

4.4. ..Disclaimer! 9

5. ..Proposed requirements! 10

5.1.Same attributes should be provided in the output! 10

5.2. ...Scaling! 10

5.3. ..MRT-formatted files! 11

5.4. ..Less delay! 11

5.5. ...Live data stream! 11

5.6. ..Raw data! 11

5.7. ...Aggregation of data! 11

5.8. ..Integrity of data! 12

5.9. ...Authorisation and encryption! 12

5.10. ...Announce ANCHOR/BEACON IPs! 12

5.11. ...Extensible! 12

5.12. ...Security! 12

5.13. ...eBGP multihop! 12

5.14.Correlation between atlas/anchor and RRC! 12

5.15. ..Usability! 13

Research RIS Route Collector! !

2

5.16. ..Open Source! 13

5.17. ..Spike detection! 13

5.18. ..Separate full feed from partial feed! 13

5.19. ..Metadata! 13

5.20. ...Ordering! 13

5.21. ...High resolution timestamp! 13

6. ...MoSCoW! 14

6.1. ..Use cases! 14

6.2. ...MoSCoW scheme! 15

6.3. ...Out of scope requirements! 16

6.4.Requirements that are not in the MoSCoW scheme! 16

7. ...Researched projects and programs! 17

7.1. ..Custom solution with ExaBGP! 17

7.2. ...BGPmon! 21

7.3. ..OSR Quagga! 25

7.4. ..BIRD Internet Routing Daemon! 27

7.5. ..OpenBGPD! 30

7.6. ..XORP! 33

7.7. ...Vyatta (Free Community Version)! 36

7.8. ...PyRT! 38

7.9. ...BMP (BGP Monitoring Protocol)! 40

7.10. ...Ryu! 42

7.11. ..Summary! 45

8. ...Other modules/implementations! 46

8.1. ..Queueing mechanisms! 46

8.2. ...Apache Kafka! 46

8.3. ...RabbitMQ! 47

Research RIS Route Collector!

3

8.4. ..HornetQ! 48

8.5. ...ØMQ/ZeroMQ! 48

9. ..Conclusion! 49

9.1. ..Total score overview! 49

9.2. ...Conclusion! 50

9.3. ...Evaluation! 50

10. ..Proposal! 51

10.1. ..Custom solution using ExaBGP! 51

10.2. ...Producer! 53

10.3. ..State formatter! 55

10.4. ..HBase consumer! 56

10.5. ...Queue! 57

10.6. ..Developer planning! 58

10.7. ..What is necessary! 58

10.8. ..Note on prototype! 58

11. ...Resources! 59

12. ...Appendix! 61

12.1. ..MoSCoW! 61

Research RIS Route Collector! !

4

1. Introduction
The current RIS implementation, that is used by the RIPE NCC, was released in 2001.
Back then, use-cases and requirements were different from the ones people have now.
The project “Replacement of RIS Route Collectors” has been initiated in the year 2013 and
started in the year 2014. It is aimed at researching possible alternatives for the current
implementation but also to develop and deploy a prototype.

This document is a research paper and will include the following items: a MoSCoW-
scheme, researched alternatives, the outcome of the research and a proposal for a new
implementation of the RIS Route Collectors. The MoSCoW scheme will be used for
prioritising all the requirements. The proposal will result in a prototype that needs to be
developed and deployed. It is used to prove if the proposed alternative can meet all the
requirements and if it is possible to create the proposed alternative.

The next few chapters will give the reader a brief understanding why this project has been
initiated and what the current implementation of RIS is.

Research RIS Route Collector!

5

2. General information
The Routing Information Service (RIS), provided by RIPE NCC, was established in 2001
and started with the idea to collect and store Internet routing data from several locations
around the globe. This data, which is collected and saved by the RIS Route Collector, can
be accessed via RIPEstat and can be used for further analyses. RIPE NCC also performs
analyses on the data itself and publicise some of these researches through RIPElabs. The
Remote Route Collector (RRC), as it name suggests, collects all the Internet routing data
from several points around the world.

As more peers want to connect with the RRCs, it also takes more and more time to
process all this data. This can cause some problems; people have to wait longer for the
data, analyses have to wait because of the delay, and when IP hijacking occurs you want
to know it immediately.

This project was initiated to research, develop and deploy a prototype that replaces the
current RRCs and which invokes less delay. This document describes possible alternatives
for the current implementation and a proposal to replace the current implementation of the
RRCs.

The document will contain the following information:
• Current implementation of the RRCs
• Requirements for the new implementation
• A MoSCoW scheme, which is comprised of the requirements
• Projects that have been researched and which are compared to the MoSCoW
• A proposal

Research RIS Route Collector! !

6

3. RIS implementation and problems
This chapter will provide the reader with a general overview of the current implementation
of RIS. It is a high-level overview of the current implementation and not all exact details will
be discussed in this chapter.

3.1.Current implementation
Several RRCs at different worldwide
locations, provide a periodic RIB dump or
a dump of all the received updates during
five minute periods. These dump files are
saved in a MRT formatted file and will be
periodically synced using rsync to a
server called ‘Alpaca’. A NFS share is
mounted on “Alpaca”, which contains all
the MRT formatted files. The next step is
to save this information in a database so
that it can be retrieved at a later moment.

The current implementation uses Hadoop/
HBase as its database. The MRT
formatted files that are stored on the NFS-
share are copied to HDFS.

From HDFS, the data will be inserted into
HBase which also uses HDFS as its file-
system. Thrift is used as an API to access
data that is stored in HBase and which
needs to be accessible for public facing
websites (i.e., RIPEstat).

3.2. Description of current limitations
This subchapter will provide the reader with a general overview of the problems that are
involved with the current implementation.

Delay
One of the issues in the current implementation, is that there is a lot of delay involved in
the processing part. The data must be copied several times and needs to flow to all
different subsystems. This is in fact the main reason why this project has been initiated in
order to develop a mechanism that will later allow to reduce the latency.

Research RIS Route Collector!

7

Quagga
Quagga is being used to receive all the BGP updates on the RRCs. It maintains BGP
peering connections with multiple peers. Quagga also introduces some problems. There
have been cases where Quagga missed some of the BGP updates and this caused a RIB
that was not accurate. It is a single threaded application, which does not take advantage of
a system with multiple cores. It also reaches the maximum utilisation of the single core that
it uses and cannot handle any extra peers.

Some of the people at the RIPE NCC do not really trust the RIB dump implementation of
Quagga. There were cases where the RIB table got corrupted or that Quagga missed
updates during those dumps.

Research RIS Route Collector! !

8

4. Research methodology
This chapter describes the methodology that is used in this research paper.

4.1. Main question
This project has been initiated to answer the following main question:
“How can the current implementation of the RIS Route Collector be replaced with a better
alternative, aimed to process updates faster, make information easier to integrate in the
RIPE NCC Hadoop storage backends (e.g. through XML, JSON, or YAML), and meet the
gathered requirements?”

To answer this question the MoSCoW scheme is used to prioritise different aspects of this
project. For example, is less delay more important than an information scheme that is
easier to integrate? In subchapter 4.3 the MoSCoW scheme is introduced and it explains
how it was used in the research stage.

4.2. Process
During the research stage different methodologies were used to gather all the required
information, process the information and research it. It involved gathering information
about the project, understanding RIS, gathering all the requirements by interviewing
people and setting up meetings. All these requirements were prioritised using MoSCoW
and was used to prioritise the different requirements of this project. Most of the research in
the research phase was done be reading documentation and RFCs as part of desk
research.

4.3. MoSCoW scheme
The MoSCoW scheme will give the requirements different priorities and is, in this case, a
better methodology to use during this research stage. It is not the only methodology or
toolkit that was used in this project. A few examples of other methodologies that were used
are desk research and interviewing the stakeholders.

The MoSCoW scheme is also used to see if a possible alternative will meet all the re-
quirements and how much work needs to be done when a requirements is not met. It is
also used to see if all these requirements can be met with another alternative.

4.4. Disclaimer
The use of this methodology has been approved by the supervisors of this project1.

Research RIS Route Collector!

9

1 During the meeting on Tuesday February 11th!

5. Proposed requirements
This chapter will show all requirements that were proposed during meetings and/or
interviews. It does not mean that all the requirements will be considered in-scope of this
project. All the requirements that were considered in-scope, and that have been used
during the research stage, can be found in the next chapter. It is possible that some
requirements listed here are out of scope or are post-processing requirements which is
related to this project.

The terms “SHOULD, MUST, WILL” does not mean that this proposed requirement will
make it to the definite MoSCoW scheme. This MoSCoW scheme will be discussed in the
next chapter.

5.1. Same attributes should be provided in the output
The same BGP attributes, that are provided by the current implementation, should also be
provided by the new implementation. The following attributes are outputted in the current
implementation:
• Time
• MRT Routing information type
• BGP message type (Announce/Withdrawal)
• Peer IP
• Peer AS
• AS path
• Aggregation
• Local preference
• MED

These attributes are used internally in RIPE NCC but are also being used by the
community for researching/analysing purposes. When attributes are missing, it could be
possible that an analysing tool cannot use the data that is provided by another
implementation.

5.2. Scaling
The new implementation should be able to handle more peers than the current
implementation. It should be possible to expand the resources that are necessary to
handle all of the data that is processed by this system. For example, a queueing system
needs to be scalable in order to hold all the messages that need to be processed. This
system should provide a mechanism where extra resources (i.e. servers) can be added to
the cluster so that it can handle more messages.

Research RIS Route Collector! !

10

5.3. MRT-formatted files
The Multi-Threaded Routing Toolkit (MRT) format is used as a file format for the current
implementation’s output. People at the RIPE NCC, and also the community, still rely on the
MRT-formatted data that is provided by the current RIS implementation. Users can
download the data, parse it and analyse the data for researching purposes. There are still
tools used internally at RIPE NCC that rely on these MRT-formatted data, it is still a wish to
maintain these files in order to fully support these tools. It is possible that the tools can be
updated in order to support the new format, but this will take time and this needs to be
accounted for.

5.4. Less delay
The current implementation involves a lot of delay. From the moment when the data is
outputted and the data is processed, it takes a couple of hours before the data is available.
Different processes, most of them are cronjobs, wait on each other which introduces delay.
It would be useful for users, and RIPE NCC itself, that the flow of data is more a stream of
data and not batch oriented. It also creates the ability to process the data as a stream
instead of a batch oriented process.

Users could benefit from the fact that, if there is less delay involved with a new
implementation, they can analyse data which is more current than the currently available
data.

With less delay, some people mean that there should be an up-to-date RIB available when
a request is made.

5.5. Live data stream
The most optimal and extreme case of ‘less delay’ is to have access to a live stream of
data. Users could benefit from the fact if they can have access to a stream of live data.
The users could then create tools that analyse the live stream and can send alerts if their
filter matches the output.

5.6. Raw data
The output that is provided, by a certain application, should also contain the raw data. This
is useful when a new attribute is introduced but cannot be parsed by the application itself.
When another application can parse the attribute, it is still possible to do so if the raw data
is provided in the output. Supporting this feature results that no attributes will be lost during
processing and that users could always parse the raw data if they want to analyse the new
attribute.

5.7. Aggregation of data
All of the data can be aggregated by an application. This aggregated data set could be
used to get a total overview of all the data that has been received by all the RRCs. This
can be useful when someone wants to see if a new announced prefix can be seen by all
the RRCs and how many neighbours, from the RRC’s point of view, have received the
prefix in one of its updates.

Research RIS Route Collector!

11

5.8. Integrity of data
If an update is missed by one of the RRCs it will lead to an inconsistent or corrupt RIB
table. Therefore it is important that all updates must be received and processed to
maintain the integrity of the data.

5.9. Authorisation and encryption
Only authorised programs or users can access the systems that are used in the new
implementation. Data that is transferred in the new implementation should also be
encrypted so that the data cannot be read by unauthorised users. It is also a hot topic at
the IETF that new implementations should provide security2.

5.10.Announce ANCHOR/BEACON IPs
The current implementation announces anchor and beacon IP prefixes periodically. This is
useful for studies concerning unwanted effects on convergence when applying Route Flap
damping practices.

5.11.Extensible
There could be a scenario in the future were a new functionality is added to the new
implementation. This happened in the past with the announcements of the anchor and
beacon IPs. It was not part of the RRC till the decision was made to add this feature to the
RRC. To support such use cases, the system has to provide a way for adding additional
features.

5.12.Security
The system should somehow secure the messages that are sent between intermediate
systems, so that messages cannot be malformed during transmission, and the data should
remain confidential during this transmission.

5.13.eBGP multihop
Some peering relationships are set up using the eBGP multihop feature. This feature does
not require a direct connection to be set up between the RRC and peer, which is already
being used in the current implementation.

5.14.Correlation between atlas/anchor and RRC
Data received from the atlas and anchors should be correlated with the RRC’s data. This is
useful for research and analysis, and can be used to detect differences in routes from
Atlas, Anchor or RRC its view.

Research RIS Route Collector! !

12

2 For more information about security and the IETF, please read the following article: http://
www.circleid.com/posts/
ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
(09/09/2013, CircleID, Dan York)

http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/

5.15.Usability
The output from the RRCs should be usable, in the sense that it is easy to parse and the
data can be easily processed. It must be clear for anyone what the output is and what the
meaning of the output is.

5.16.Open Source
The implementation should be open source and may be published to be publicly available.

5.17.Spike detection
When a reset is issued by a peer, the RRC will receive all prefixes when the connection is
re-established. As an example, this could create a spike in a graph that shows how much
routes have been received. The implementation should detect this so that the graphs will
not get malformed if a reset was issued by the peer.

5.18.Separate full feed from partial feed
The BGP updates that the RRCs receive come from different peers. These peers can
provide the RRC with a full or partial feed. It will be useful if there is a mechanism were the
data of the full feed can be separated from the partial feed. This will enable the users to
select if they want to receive information of a partial or full feed. Some people of the RIPE
NCC say that the information is too cluttered at the moment because there is no distinction
in the full or partial feed.

5.19.Metadata
The new implementation should output metadata about the RRC. Programs that use the
RRC services, should be able to know the state of the peering connections. The new
implementation must also send keepalive messages to the applications so that the
applications know if the RRC is still alive.

5.20.Ordering
When output is generated by an application it should be possible to order this data. This
can be done using a sequence number or it must be sure that everything, in the whole
process chain, is processing and generating information in an ordered sequence. In some
parts of the process chain, it is important that the information is ordered (e.g. to maintain a
RIB state).

5.21.High resolution timestamp
The high resolution timestamp is a requirement that has been requested by the RIPEstat
team. They want to have access to a higher resolution timestamp for their research and
analyses.

Research RIS Route Collector!

13

6. MoSCoW
The MoSCoW scheme, which is presented in the next subchapter, is composed from the
requirements that were received during the research stage. The following categories exist
in the MoSCoW scheme of this project: “Must, Should, Could, Would and Out of scope.”
The category ‘Out of Scope’ is added because some requirements are not in scope of the
RIS project and are not considered to fit in the ‘would’ category. In a separate subchapter it
will be explained why some requirements are considered to fall under the ‘out of scope’
category.

For the readers who are not familiar with MoSCoW, please read the first appendix. The
first appendix will briefly explain MoSCoW.

6.1. Use cases
This chapter describes the use cases that currently exist. Some of the use cases are not
supported by the current implementation. The use cases outlined below will give a better
understanding why some of the requirements are listed in the MoSCoW scheme.

Analysing
People at the RIPE NCC and the community can download the MRT formatted files, which
are provided by the current RIS implementation. These MRT formatted files hold the whole
RIB state for each of the route collectors, or all the update messages that have been
received by the RRC in a given time period. Users can download these files to do research
on routing. For example, when someone wants to know if their prefixes are announced
and are propagating through the network.

Note: This is possible with the current implementation

IP hijacking
When someone else is announcing a prefix that has been allocated to a certain entity, one
wants to know this in a short amount of time. The person wants to know which AS is
announcing the prefix and can take action to resolve this issue.

Note: This is not possible with the current implementation. Users have to wait for a long
period before this data is available and it is only useful if this data is available in a short
amount of time.

Live RIB state
Users can get a live RIB state at any given moment and can see what the state of the RIB
is. This can be useful for users who want to get a live overview of a RIB and want to do
research with it.

Note: This is not possible with the current implementation. Users have to wait for a long
period of time before this data is available.

Research RIS Route Collector! !

14

6.2. MoSCoW scheme
The following MoSCoW scheme will be used during research.
Must:

Announcements of anchor/beacon IP

MRT-formatted files

Raw data

Metadata

Ordering

Less delay

Same attributes

eBGP multihop

Scaling

Should:

Live data stream

Integrity of data

Extensible

Could:

High resolution timestamp

Authorisation and encryption

Would:

None

Out of scope:

Spike detection

Aggregation of data

Correlation between atlas/anchor and RRC data

Separate full feed from partial feed

The input for these requirements were provided during interviews and meetings.

Research RIS Route Collector!

15

This MoSCoW scheme was approved by the staff of the RIPE NCC during a meeting
about the requirements and priorities3.

6.3. Out of scope requirements
Out of scope means that the requirements is not considered in scope for this or future pro-
jects.

The following requirements are considered out of scope:
• Aggregation of data;
• Correlation between atlas/anchor and RRC data;
• Separate full feed from partial feed4.

The reason that the ‘aggregation of data’ requirement is considered to be out of scope for
this project. It is considered to be more a post-analysing item. The job of the RRCs is to
receive the BGP updates and do further processing. A separate tool or project is needed to
provide an aggregation of data between the RRCs.

The correlation between the Atlas probes, Anchor, and RRC data is also considered out of
scope. This is also considered a post-analysing item which is not the RRC’s job. It can
cause more overhead and the RRC’s job should be clear and should not take extra
overhead to provide such features. There is a considerable chance that because of this
overhead extra delay could be involved.

The ‘separate full feed from partial feed’ requirement is considered to be out of scope of
this project. It can not really be determined on a RRC if a peer is sending a full feed or a
partial feed and there is no standardised way of determining if a peer is sending its full
feed to the RRC. Therefore, this needs to be determined after the routes have been col-
lected, which is done in the post-processing state of the whole RIS system.

6.4. Requirements that are not in the MoSCoW scheme
Some requirements did not end up in the MoSCoW scheme. This can be caused when the
requirement is too vague, is only considered a discussion item or is not part of the RIS
project at all. If a requirement is not listed in the MoSCoW scheme it was the consensus
outcome of the discussion during the requirements and prioritisation session.

Research RIS Route Collector! !

16

3 This meeting was on Thursday 27th of February
4 When a peer sends its full feed the advertised routes are not filtered by the neighbour.
With partial feeds the neighbour filters the routes that are send to the RRC.

7. Researched projects and programs
This chapter will describe the projects and/or programs that have been researched during
the research phase. All projects and/or programs, that will be discussed in subsequent
subchapters were considered to be in scope of this project5.

Every possible alternative is compared with the MoSCoW scheme, which was presented in
the previous chapter. A brief description is included in the diagram, which describes if the
requirement is or can be met and how much work is involved to meet this requirement. A
score is also included in the diagram that reveals, in a quick glimpse, if the requirement is
met or how much work is involved to meet the requirement. The score is presented using
the “++, +, -, --“ characters and mean the following:

++ Requirement is met and no further work needs to be done
+ Requirement is not met and little work is involved to meet the requirement
- Requirement is not met and some work needs to be done to meet the requirement
-- Requirement is not met and a lot of work is involved to meet this requirement

7.1. Custom solution with ExaBGP
This will be a custom solution which is a combination of multiple programs or projects. The
BGP messages that are transmitted by the peers will be received by ExaBGP. ExaBGP
can be compared with a Software Defined Networking program. It allows a user to
transform BGP messages into plain text or JSON, which can then be received by another
module or script for further processing. ExaBGP supports multiple drafts and RFCs6 that
are used by several other companies7.

ExabGP is shipped with an API to extend its functionalities. The output that is generated
by ExaBGP can be received by another application. A custom program can receive this
information and process this data. It is possible to send data back to ExaBGP using the
standard output stream, stdout) of the custom program. ExaBGP also provides the ability
to specify which application must be invoked in certain circumstances. For example, a
specific program is only invoked when an update has been received by ExaBGP or to
invoke a different program when an IP-address needs to be announced. ExaBGP is a
single-threaded program, but it is possible to create an ExaBGP instance per peer (e.g.,
process-per-peer-model).

Research RIS Route Collector!

17

5 A project or program was considered in scope if it fulfilled one of the requirements that
are listed in the requirements scheme
6 To see which drafts and RFCs are supported, please visit: https://github.com/Exa-
Networks/exabgp/wiki/RFC-Information (exaBGP, 17-02-2014)
7 To see which companies use exaBGP, please visit: https://github.com/Exa-Networks/
exabgp (exaBGP community, 14-02-2014)

https://github.com/Exa-Networks/exabgp/wiki/RFC-Information
https://github.com/Exa-Networks/exabgp/wiki/RFC-Information
https://github.com/Exa-Networks/exabgp/wiki/RFC-Information
https://github.com/Exa-Networks/exabgp/wiki/RFC-Information
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp

This program does not maintain a RIB table, but an issue has been created on Github that
this might be supported in future8. It is currently up to another program to maintain a RIB
table9.

ExaBGP only provides us, in this project, with functions to receive and send BGP packets.
The received information must be further processed and this information must somehow
be stored in HBase. It is not feasible to store the information directly into HBase as it can
cause a lock on the program that was invoked by ExaBGP. The RRC’s job is to receive
and store the data, it is not up to the RRC to do further processing. A more logical choice
would be to use a queueing mechanism between the RRCs and the datastore. The
queueing mechanisms will be discussed in a separate subchapter.

After the data is stored in the queue, another system will consume the data from the queue
and will do the post-processing stage. In this stage the output of ExaBGP will be stored in
the datastore or the program will do some data manipulations.

There is also a need to create a custom application that receives the updates, stored in the
queues, and create MRT formatted files for maintainability. It will periodically create a full
table dump and will also periodically dump the updates in a MRT formatted file. These files
will then be stored on the NFS share so that the community can still have access to these
files.

This custom solution will also give us the ability to have access to a live data stream. The
implementation depends on the queueing mechanism that is used in this custom solution.
If the queue implementation can not provide multiple consumers with a live stream of data,
the live stream must be stored in the datastore. This can cause a higher load on the
datastore itself. An API needs to be created which relies on the queueing system or the
datastore, for providing the data, and which can provide filters or authentication.

Pros
• Active project and regularly updated
• Exported data in JSON format

• This format is already used internally for analysing data
• Raw data could be received from the receive-packets option

• Only requires some work when both the raw and parsed update message must be in
one JSON message

• It is open source and can be extended with features
• It depends on programs/script to do something with the data (this is the mindset of

ExaBGP)
• Open source BSD license

Research RIS Route Collector! !

18

8 For more information, please visit the following website: https://github.com/Exa-
Networks/exabgp/issues/45 (ExaBGP, Github, 14-02-2014)
9 For more information, please visit the following website: https://github.com/Exa-
Networks/exabgp (ExaBGP, Github, 14-02-2014)

https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp

Cons
• High performance issue (when having more than 100 peers)10

• There is no RIB (only adj-RIB-out)
• Must create own implementation to create a RIB

• Not multi-threaded or multi-process architecture
• But it is possible to create a process per peer

• No feature to output MRT-formatted files for maintainability
• If JSON structure changes the post processing needs to be changed11

• The version, since when the JSON output has been changed, is added in the JSON
output itself

Research RIS Route Collector!

19

10 For more information about this problem, please visit the following website: https://
github.com/Exa-Networks/exabgp/issues/97 (ExaBGP, 17-02-2014)
11 This is required since the consumers depend on the data that resides in the JSON
messages. If the structure changes, the consumers need to be changed as well, otherwise
it can not read the data.

https://github.com/Exa-Networks/exabgp/issues/97
https://github.com/Exa-Networks/exabgp/issues/97
https://github.com/Exa-Networks/exabgp/issues/97
https://github.com/Exa-Networks/exabgp/issues/97

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements of
anchor/beacon IP

Is possible, IP prefixes can be announced. ++

M2 MRT-formatted files Need to create our own application which
creates the MRT-formatted file

--

M3 Raw data Provided by ExaBGP, need to modify code
to have the parsed and raw data available
in one JSON message.

+

M4 BGP metadata Possible to output state messages, if more
data is necessary the code needs to be
modified.

+

M5 Ordering Need to create a sequential ID in the output. +

M6 Less delay If data is inserted directly in the database it
will involve less delay. It only requires that
an application needs to be created which
does the insertion into the database.

-

M7 Same attributes Same attributes are provided in the output. ++

M8 eBGP multihop Possible. ++

M9 Scaling Can create thread-per-peer model and, de-
pending on the queue mechanism, it is
scalable.

++

Should:

S1 Live data stream Output is generated per received BGP up-
date message. Message only needs to be
stored somewhere and should be later re-
trieved. This needs to be created.

+

S2 Integrity of data Depends on the queue mechanism that will
be used.

+

S3 Extensible Very extensible, shipped with an API. ++

Could:

C1 High resolution
timestamp

Is possible, will be implemented by the
original developer of ExaBGP

++

C2 Authorisation & encr. Not a feature, but could use SSH tunnel. +

Research RIS Route Collector! !

20

7.2. BGPmon
BGPmon, not to be confused with the protocol BMP or the service BGPmon12, was created
with the same philosophy as this project. The project uses a modular architecture to scale
properly for all the monitored BGP peers and also supports a distributed deployment. All
monitored updates, RIB dumps, and MRT files. This input can be outputted in a XML
format. The output can be used as input for an analytic program and it is already used to
analyse events13. The output can be retrieved from the default ports 50001 and 50002, the
distinction between the two ports is that the first one only outputs the BGP update in XML-
format and the second one only outputs the RIB tables in XML format.

BGPmon can handle multiple peers and uses a thread-per-peer model. Every thread is
assigned to a specific peer and this causes a better throughput sine it takes advantage of
a multicore system. The following image presents a high-level overview of the internals of
BGPmon14:

Research RIS Route Collector!

21

12 The BGPmon service: http://www.bgpmon.net/
13 For more information, please watch the following video: http://www.youtube.com/watch?
v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8 (BGPmon
team, NANOG60, 2014)
14 Image acquired from BGPmon article. For more information, please visit the following
website: http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf (BGPmon,
25-02-2014)

http://www.bgpmon.net/
http://www.bgpmon.net/
http://www.youtube.com/watch?v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8
http://www.youtube.com/watch?v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8
http://www.youtube.com/watch?v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8
http://www.youtube.com/watch?v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8
http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf
http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf

The system does not have the possibility to announce IP prefixes. This was a design
decision to make sure that no bug or faulty configuration can announce an IP address. In
this way, BGPmon is very neutral and cannot have a devastating impact on your
network15 .

In BGPmon, writers add data to the queue and the data is only removed after all readers
have accessed the data. Due to the fact that writers and readers can have different
speeds, which could be caused by different bandwidth or processing speeds, BGPmon
has two mechanisms that can handle these problems.

Pacing writers, a mechanism where the queue paces the writers according to the
average reading rate across all readers. If a queue exceeds the length of a configurable
threshold, it will enable pacing until the queue length drops below a second threshold .

Dropping a slow reader, a mechanism where a reader is dropped despite the attempts to
pace writers to the average reader 16.

The community that supports BGPmon provides additional extensions, so called modules,
to analyse or interpret the outputted information. There is a module that acts as an
archiver17, and which connects to the live feeds and save the information in a XML file. It is
also possible that the output can be saved to a similar output18 that bgpdump19 provides.

Research RIS Route Collector! !

22

15 Explanation why BGPmon does not have the capability of announcing routes: http://
bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq (BGPmon, Network
Security Group, Colorado State University, 14-02-2014)
16 For more information please read chapter 4.2 “Stream controller”: http://
bgpmon.netsec.colostate.edu/download/publications/catch09.pdf (BGPmon: A real-time,
scalable, extensible monitoring system)
17 For more information, please read the following README file: http://
cpansearch.perl.org/src/BGPMON/BGPmon-Archiver-2-10/README (BGPmon, Network
Security Group, Colorado State University, 14-02-2014)
18 To see this output, please visit: http://archive.netsec.colostate.edu/date/2014.02/14/
UPDATES/updates.20140214.0000.2001:12f8::218:121.bgpdump-001 (BGPmon, Network
Security Group, Colorado State University, 14-02-2014)
19 To download the source of bgpdump, please visit the following site: http://
www.ris.ripe.net/source/bgpdump/ (RIPE NCC, 14-02-2014)

http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf
http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf
http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf
http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf
http://cpansearch.perl.org/src/BGPMON/BGPmon-Archiver-2-10/README
http://cpansearch.perl.org/src/BGPMON/BGPmon-Archiver-2-10/README
http://cpansearch.perl.org/src/BGPMON/BGPmon-Archiver-2-10/README
http://cpansearch.perl.org/src/BGPMON/BGPmon-Archiver-2-10/README
http://archive.netsec.colostate.edu/date/2014.02/14/UPDATES/updates.20140214.0000.2001:12f8::218:121.bgpdump-001
http://archive.netsec.colostate.edu/date/2014.02/14/UPDATES/updates.20140214.0000.2001:12f8::218:121.bgpdump-001
http://archive.netsec.colostate.edu/date/2014.02/14/UPDATES/updates.20140214.0000.2001:12f8::218:121.bgpdump-001
http://archive.netsec.colostate.edu/date/2014.02/14/UPDATES/updates.20140214.0000.2001:12f8::218:121.bgpdump-001
http://www.ris.ripe.net/source/bgpdump/
http://www.ris.ripe.net/source/bgpdump/
http://www.ris.ripe.net/source/bgpdump/
http://www.ris.ripe.net/source/bgpdump/

Pros
• Multi threaded (per peer)
• Scalable

• It is possible to create a cluster
• Queue mechanism

• Maintains fast read and writes by
• Pacing writers
• Dropping slow readers

• Stores one RIB-IN for each peer
• Updates are accessible separately from the RIB table

• Updates default port 50001
• RIB table table transfers default port 50002

• Possibility to create ACL for retrieving information
• Can import MRT-formatted data
• Raw data available in XML output

Cons
• Mainly XML output

• If XML structure changes, the post processing application changes
• They just changed their format20

• Next releases will still support the old format
• This provides customers to change their converter or interpreter

• Cannot announce anchor or beacon IP addresses
• Which is a must requirement

• It missed some updates in the past21

• Have had some problems with memory leaks in the past22

• Could be the case that readers are dropped when they are reading too slow and can
cause corrupted data.

Most of the statements that are made above relies on the information that is available at
the BGPmon website23.

Research RIS Route Collector!

23

20 Release notes of BGPmon v7.3.0: http://bgpmon.netsec.colostate.edu/index.php/live-
data/69-bgpmon-730-released-alias (BGPmon, Network Security Group, Colorado State
University, 14-02-2014)
21 According to some contacts Emile spoke to and who can be trusted according to Emile.
22 For more information, please read the bugfixes on the following page: http://
bgpmon.netsec.colostate.edu/index.php/download (BGPmon, 25-02-2014)
23 For more information about BGPmon, please visit the following website: http://
bgpmon.netsec.colostate.edu/ (BGPmon)

http://bgpmon.netsec.colostate.edu/index.php/live-data/69-bgpmon-730-released-alias
http://bgpmon.netsec.colostate.edu/index.php/live-data/69-bgpmon-730-released-alias
http://bgpmon.netsec.colostate.edu/index.php/live-data/69-bgpmon-730-released-alias
http://bgpmon.netsec.colostate.edu/index.php/live-data/69-bgpmon-730-released-alias
http://bgpmon.netsec.colostate.edu/index.php/download
http://bgpmon.netsec.colostate.edu/index.php/download
http://bgpmon.netsec.colostate.edu/index.php/download
http://bgpmon.netsec.colostate.edu/index.php/download
http://bgpmon.netsec.colostate.edu/
http://bgpmon.netsec.colostate.edu/
http://bgpmon.netsec.colostate.edu/
http://bgpmon.netsec.colostate.edu/

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements of
anchor/beacon IP

This function is not provided by BGPmon
on default.

--

M2 MRT-formatted files Does not provide a feature to create a
dump in a MRT-format. Need to create
our own application that retrieves informa-
tion from BGPmon and create a dump.

--

M3 Raw data Raw data is available in the data stream. ++

M4 BGP metadata Provides BGP states, but no keepalive
messages.

-

M5 Ordering Sequence number added in the output. ++

M6 Less delay There is a live stream of data but need to
create an application that inserts the data
into the database.

+

M7 Same attributes Same attributes are provided by
BGPmon.

++

M8 eBGP multihop Possible. ++

M9 Scaling Is possible. ++

Should:

S1 Live data stream It only provides users/programs with a live
data stream.

++

S2 Integrity of data Had some memory issues and missed
some updates in the past.

-

S3 Extensible Can modify the source code, but there is
not a real API and documentation. Be-
sides the comments in the source code.

--

Could:

C1 High resolution times-
tamp

Need to modify the code to add this at-
tribute, requires some effort.

-

C2 Authorisation & encr. Provides authentication but no encryption. +

Research RIS Route Collector! !

24

7.3. OSR Quagga
The Open Source Routing is supported by ISC and aims to support the community in
releasing a mainstream, and a stable routing code to enable network innovation. They
focus on Quagga and partners with the existing developer community, independent code
committers, service providers and academic institutions to deliver a higher quality code
base for Quagga.

They provide the following services to the Quagga community:
• Release Management
• Release Testing
• Bug Management
• Development
• Support

When OSR has developed new features or has changed the code, it will push the code
upstream in the mainstream Quagga releases. A diff check on the source code of Quagga
and the OSR’s code reveals that there are no differences in the implementation.

The OSR team also advises to wait when the code is implemented in the Quagga
mainstream releases and advises to use the OSR’s code only for testing and development
24.

Pros
• Active community
• OSR Quagga will implement new features if they are requested25

Cons:
• There is no documentation available

• Only comments in the code
• The OSR’s code, that is accessible on Github, is nearly the same as Quagga26

• This will result in using the same application and structure as is being used now

Research RIS Route Collector!

25

24 To see this statement, please visit the following website: https://github.com/
opensourcerouting/quagga (17-02-2014)
25 This only applies if it is strongly needed by the user base. For more information, please
visit the following website: http://opensourcerouting.org/about-us (17-02-2014)
26 If the differences of the compared code are related to this project

https://github.com/opensourcerouting/quagga
https://github.com/opensourcerouting/quagga
https://github.com/opensourcerouting/quagga
https://github.com/opensourcerouting/quagga
http://opensourcerouting.org/about-us
http://opensourcerouting.org/about-us

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements of
anchor/beacon IP

Is possible ++

M2 MRT-formatted files Is possible, but exactly the same as
Quagga

++

M3 Raw data Is in the MRT-formatted files ++

M4 BGP metadata Is in the MRT-formatted files ++

M5 Ordering Is already done when it is dumped in
the MRT-formatted files

++

M6 Less delay Not really, same implementation as
Quagga

--

M7 Same attributes It is the same, since its core is
Quagga

++

M8 eBGP multihop Possible ++

M9 Scaling Not really possible, as it basically is
Quagga (which cannot handle any
more peers)

--

Should:

S1 Live data stream Not provided or need to create locking
and watch the dump files

--

S2 Integrity of data As RIPE NCC currently suspects
Quagga of missing updates it will also
miss some updates here

-

S3 Extensible If code needs to be changed it is bet-
ter to modify the mainstream code of
Quagga

--

Could:

C1 High resolution timestamp If code needs to be changed it is bet-
ter to modify the mainstream code of
Quagga, requires some effort

--

C2 Authorisation & encr. Not provided by this implementation,
but could use a SSH tunnel.

+

Research RIS Route Collector! !

26

7.4. BIRD Internet Routing Daemon
The BIRD Internet Routing Daemon was developed as a school project at the Faculty of
Math and Physics in Charles University Prague. It received contributions from Martin
Mares, Pavel Machek and Ondrej Filip and is now sponsored and developed by CZ. NIC
Labs. The project aims to develop a fully functional dynamic IP routing daemon primarily
targeted on Linux, FreeBSD and other UNIX-like systems.

It supports multiple routing protocols such as BGP, RIP, OSPF, and maintains multiple
routing tables. BIRD is single threaded and can save the states and/or messages in a
MRT-formatted file when they are received by the application. It is not intended to store all
BGP updates every five minutes. After a message or update message has been received it
will directly append it to the file that was configured to store this information. It is more
CPU and memory friendly than Quagga is. This is showed in the following image27.

It is built with a modular design in mind and the BGP protocol is implemented in three
different parts: bgp.c will handle the connections and most of the interfaces with BIRD its
core, packets.c will handle the incoming and outgoing BGP packets and attr.c contains
functions to manipulate the BGP attributes list28. In theory it is possible to add our own
code to receive the packets and send it to a queueing system, which can be used to
retrieve the information for post processing. It is likely that these code changes will not
make it in the mainstream releases, since our use case is a special one. Newer version of
BIRD could override the code changes or make it incompatible, which will cost time to fix
such issues.

Research RIS Route Collector!

27

27 Image acquired from the following website, it also provides more information about the
comparison: https://www.nanog.org/meetings/nanog48/presentations/Monday/
Filip_BIRD_final_N48.pdf (NANOG, NANOG meeting 48, 17-02-2014)
28 Information gathered from comments in the code.

https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf

Pros
• Memory friendly
• CPU friendly
• Can save messages into MRT-formatted files29

• Messages
• States

Cons
• Single threaded, might face similar utilisation issues as experienced with Quagga
• Only able to write dumps to a file30

• Not possible to invoke another program
• It will involve a similar implementation as the one that is used now
• Data can be corrupted while reading the output file

• Quick glimpse at the output file reveals that it is not closed by BIRD when it is running
• This can cause corrupted data or half received updates when the file is being read

Research RIS Route Collector! !

28

29 More information can be found in the configuration section of the website: http://
bird.network.cz/?get_doc&f=bird-3.html#ss3.2 (BIRD)
30 If you look at the configuration options, there is no configuration option available to
invoke another program for processing the MRT data.

http://bird.network.cz/?get_doc&f=bird-3.html#ss3.2
http://bird.network.cz/?get_doc&f=bird-3.html#ss3.2
http://bird.network.cz/?get_doc&f=bird-3.html#ss3.2
http://bird.network.cz/?get_doc&f=bird-3.html#ss3.2

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements of
anchor/beacon IP

Possible. ++

M2 MRT-formatted files Dumps updates straight into the dump file. ++

M3 Raw data Is available in MRT-formatted file. ++

M4 BGP metadata Stored in the MRT-formatted files. ++

M5 Ordering Ordered in the MRT-formatted files ++

M6 Less delay Not really, an application has to read the
contents of the file. But the file is constantly
opened by BIRD and BIRD can write into
the file when our application wants to read
from it. Need to add a locking mechanism if
the application needs to read the dump file.

--

M7 Same attributes Same attributes are stored in the MRT-
formatted file.

++

M8 eBGP multihop Possible. ++

M9 Scaling Not really or an application must push the
messages into a queue. Otherwise Alpaca
has to retrieve all the dumps from the
RRCs. But utilises less memory and CPU
than Quagga, but still single threaded.

-

Should:

S1 Live data stream Need to modify the code, because every-
thing is stored in a file and BIRD does not
provide an API or locking mechanism able
to read the contents of the file safely.

-

S2 Integrity of data Updates are processed and can be
dumped.

++

S3 Extensible Source code is publicly available and there
is some documentation in the source code.

-

Could:

C1 High resolution
timestamp

Need to modify the source code to add this
functionality, requires some effort.

-

C2 Authorisation & encr. Not provided by this implementation, but
could use a SSH tunnel.

+

Research RIS Route Collector!

29

7.5. OpenBGPD
OpenBGPD is a free implementation of BGP version 4. The project started out of
dissatisfaction of other implementations that existed at that time and is now a fairly
complete BGP implementation. It is used by different users and advertises that users often
praise its ease of use and high performance, as well as its reliability31 on their website. The
latest release went live on the first of November 2009, which carries the version 4.6.

OpenBGPD can create dumps at regular time intervals and will create a MRT-formatted
file for it. It is possible to give all the files a different filename based on the current time. In
this way it is possible to distinguish the different updates from each other32 .

The application uses multiple processes and is relatively as efficient as BIRD which is
revealed by the following image33.

OpenBGPD uses three processes which have the following tasks34:
• Session Engine (SE): Which manages the BGP sessions
• Route Decision Engine (RDE): Which holds all the BGP tables and takes the routing

decisions
• Parent: Add routes to the kernel, starts SE and RDE

There is not much documentation available and more research on the source code needs
to be done before the decision can be made to use OpenBGPD.

Research RIS Route Collector! !

30

31 For more information, please visit the following website: http://www.openbgpd.org/
(19-02-2014, OpenBGPD)
32 For more information about the dump capabilities in OpenBGPD, please visit the
following website: http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd.conf (OpenBGPD)
33 Image acquired from the following website, it also provides more information about the
comparison: https://www.nanog.org/meetings/nanog48/presentations/Monday/
Filip_BIRD_final_N48.pdf (NANOG, NANOG meeting 48, 17-02-2014)

34 For more information, please visit the following website: http://www.openbsd.org/cgi-bin/
man.cgi?query=bgpd (OpenBSD, Man page, 02-06-2014)

http://www.openbgpd.org/
http://www.openbgpd.org/
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd.conf
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd.conf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd

Pros
• Can create a dump file in a MRT-format
• Messages and full tables can be exported in separate MRT-formatted files
• A regular time interval can be configured for the dumps

Cons
• Does not provide users with a live stream of data
• There is no real difference in the implementation from the one that is now being used

• It is only utilises less CPU and memory
• Takes more time to research the source code and create a module which can store the

received packets in a queue
• Not really a modular design that allows to invoke other modules without changing the

source code35

Research RIS Route Collector!

31

35 This is concluded after researching the source code

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements of
anchor/beacon IP

Possible. ++

M2 MRT-formatted files Periodically dumps updates in a MRT-
formatted file.

++

M3 Raw data Is available in the MRT formatted file. ++

M4 BGP metadata Is available in the MRT formatted file. ++

M5 Ordering Is available in the MRT formatted file. ++

M6 Less delay Basically the same implementation as
we have now, need to change the
code to provide a live stream.

--

M7 Same attributes Is in the MRT-formatted file. ++

M8 eBGP multihop Possible. ++

M9 Scaling Not really, if the default installation of
OpenBGPD is used. Need to modify
the code to get a live stream and push
it somewhere. More CPU and memory
friendly than Quagga and uses multi-
ple processes.

-

Should:

S1 Live data stream Not possible with the default installa-
tion, need to modify the code.

--

S2 Integrity of data Updates are saved in the MRT-
formatted files.

++

S3 Extensible Not much documentation online or in
the code.

--

Could:

C1 High resolution timestamp Normal epoch timestamp, need to
modify the code to add a high resolu-
tion timestamp, requires some effort.

-

C2 Authorisation & encr. Not provided by this implementation,
but could use a SSH tunnel.

+

Research RIS Route Collector! !

32

7.6. XORP
XORP, which is an abbreviation for eXtensible Open Router Platform, supports OSPF,
BGP, RIP, PIM, IGMP, OLSR. The project has been initiated to create an open source
extendible routing platform where researches could perform tests on, but still make it a
solid and stable platform. It is created with security in mind, and if one routing instance
fails it will not drag the other ones down with it 36. XORP creates a RIB per client, but it
does not provide a built-in function to dump/save a RIB to a file. The following image is an
overview of the BGP process as it is implemented in XORP37.

The IPC system that XORP uses is named XORP Internet-Process Communication (XIPC)
in combination with the XORP Resource Locators. The XRLs are responsible for
describing the inter-process communication mechanisms and their associated arguments.
It is represented in a human readable form which lends itself for easy manipulation with
editing tools and can be invoked from the command line. XORP processes export XRL
interfaces to a process that is known as the Finder and informs the system about which
IPC schemes are available to invoke each XRL. The Finder is then able to provide a
resolution service for other processes.

In order to get the update information out of XORP, a module needs to be developed which
uses XRL to communicate with XORP. This only gets the information out of XORP and
further processing needs to be done (i.e. putting it into a queue and inserting it into the
database). Since XORP does not provide a feature or function to get the information out
easily, it may take some time to develop such a module.

Research RIS Route Collector!

33

36 For more information, please read the following paper: http://read.seas.harvard.edu/
~kohler/pubs/xorp-hotnets02.pdf (19-02-2014, ICSI Center for Internet Research)
37 For more information about the BGP implementation in XORP, please read the following
document: https://github.com/wmiltenburg/xorp_documentation/blob/master/bgp/bgp.pdf
(XORP, 19-02-2014)

http://read.seas.harvard.edu/~kohler/pubs/xorp-hotnets02.pdf
http://read.seas.harvard.edu/~kohler/pubs/xorp-hotnets02.pdf
http://read.seas.harvard.edu/~kohler/pubs/xorp-hotnets02.pdf
http://read.seas.harvard.edu/~kohler/pubs/xorp-hotnets02.pdf
https://github.com/wmiltenburg/xorp_documentation/blob/master/bgp/bgp.pdf
https://github.com/wmiltenburg/xorp_documentation/blob/master/bgp/bgp.pdf

Pros
• Multi process architecture (per protocol)
• Built from a research mindset
• Security has a high priority
• It is a modular design that allows to create a module that uses the API to gather

information form XORP

Cons
• Does not have a built-in function to store or dump the RIB table or UPDATES
• Multiple RIBs exist and the to-be-developed module must retrieve the contents of

multiple RIBs38

• urib4
• urib6
• mrib4
• mrib6

• It may take some time to develop a module which retrieves the information from XORP
• Latest official release was on January 11th 2012

• This may cause a problem when new attributes are used in BGP updates and which
need to be parsed (which is done by XORP)

• Invoking the API could cause a lock and could deteriorate the performance of XORP
when there are a lot of prefixes in the RIBs

• Need to perform measurements with the prototype if this is the chosen alternative

Research RIS Route Collector! !

34

38 According to the following article: http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/
2009-November/002229.html (XORP-hackers mailing list, 19-02-2014)

http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/2009-November/002229.html
http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/2009-November/002229.html
http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/2009-November/002229.html
http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/2009-November/002229.html

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements of
anchor/beacon IP

Possible. ++

M2 MRT-formatted files Need to build our own module to cre-
ate MRT files.

--

M3 Raw data Need to build our own module to re-
trieve the raw data from XORP.

--

M4 BGP metadata Need to build our own module to re-
trieve the attributes from XORP.

--

M5 Ordering Depends on the module that saves
the attributes or prefixes.

--

M6 Less delay It is a multi-process architecture and
extensible. Need to create a module
to store the RIB somewhere else.

+

M7 Same attributes Need to build our own module. -

M8 eBGP multihop Possible. ++

M9 Scaling It uses a process-per-protocol model
and is extensible.

+

Should:

S1 Live data stream Not provided by the current default
installation.

-

S2 Integrity of data Need to build our own module, which
receives the data and makes sure that
the integrity of the data is not violated.

-

S3 Extensible This is the main focus of XORP, to
create an eXtensible Open Router
Platform.

++

Could:

C1 High resolution timestamp Need to modify the source code or
create our own module, requires
some effort.

-

C2 Authorisation & encr. Not a feature, but could use SSH tun-
nel.

+

Research RIS Route Collector!

35

7.7. Vyatta (Free Community Version)
Vyatta provides a software-based virtual router, virtual firewall and VPN solution for the
Internet Protocol network. The network routing software engine was XORP and has been
replaced by Quagga on April 200839. In the year 2012, Brocade Communications Systems
acquired Vyatta and renamed it: “Vyatta, a Brocade Company”40. In April 2013, Brocade
renamed the Vyatta Subscription Edition (VSE) to Brocade Vyatta 5400 vRouter41. Their
latest commercial release of the Brocade vRouter is no longer open source based.

Vyatta is not only a routing engine, it is much more than that. Since its routing engine core
relies on Quagga, it does not provide any extra functions for logging or dumping the BGP
updates, Vyatta itself has not implemented extra functionality to dump or export the BGP
messages/updates.

Since their latest release is not open source anymore, a possible scenario is that the open
source version will not be maintained by Brocade anymore. It must also be kept in mind
that the open source project has been acquired by a commercial company which might no
longer be involved in the open source project since they want to keep some of their code
proprietary.

Pros
• Supports multiple routing protocols
• Has many extra/additional features

Cons
• Still uses the Quagga engine

• The same implementation, as is in use now, must be used
• Shipped with many extra functions which could cause overhead
• Does not provide any functions besides the one provided by Quagga, that are

considered in scope of this project

Research RIS Route Collector! !

36

39 For more information, please visit the following website: http://www.vyattawiki.net/wiki/
Quagga (Vyattawiki, 02/06/2014)
40 For more information, please visit the following website: http://newsroom.brocade.com/
press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-
brcd-0949599#.U5WceJSSyf8 (Brocade, 2012)
41 For more information, please visit the following website: http://www.brocade.com/
products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
(Brocade)

http://www.vyattawiki.net/wiki/Quagga
http://www.vyattawiki.net/wiki/Quagga
http://www.vyattawiki.net/wiki/Quagga
http://www.vyattawiki.net/wiki/Quagga
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5WceJSSyf8
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5WceJSSyf8
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5WceJSSyf8
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5WceJSSyf8
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5WceJSSyf8
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5WceJSSyf8
http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements of
anchor/beacon IP

The engine is Quagga, so it provides us
with the functionality to announce anchor/
beacon IPs

++

M2 MRT-formatted files The routing engine is Quagga, so it can
make dumps in a MRT-format

++

M3 Raw data Is in the MRT-formatted dumps ++

M4 BGP metadata Is in the MRT-formatted dumps ++

M5 Ordering Is in the MRT-formatted dumps ++

M6 Less delay It uses the Quagga engine, and it can peri-
odically dump its RIB and the updates it re-
ceived. It does not differ from the current
implementation and will cause the same
delay

--

M7 Same attributes Same attributes are provided as it is the
same routing engine that is used now

++

M8 eBGP multihop Is supported by the Quagga engine ++

M9 Scaling The same scaling issues will be encoun-
tered using Vyatta

--

Should:

S1 Live data stream Does not provide a feature for a live data
stream

--

S2 Integrity of data Some updates are missed using Quagga;
RIPE NCC experiences this problem with
the current implementation, it is likely to
encounter the same issue

-

S3 Extensible It is open source with a community, but its
routing engine still relies on Quagga which
is not well documented

-

Could:

C1 High resolution
timestamp

Must change the source code for it, re-
quires a lot of effort

--

C2 Authorisation & encr. Not a feature, but could use SSH tunnel +

Research RIS Route Collector!

37

7.8. PyRT
Python Routing toolkit is made for the purpose of collecting route information. The project
was last updated on May 5th 2002. It only supports one peering session according to the
documentation. This could be solved by running multiple instances of the program per
session. It saves all information into a MRT formatted file, but this file will only contain a
dump per BGP update that the program has received. In order to create a RIB table, the
application needs to maintain the state of the RIB table and cannot miss any updates that
are sent to the RRC. If this happens it will lead to an inconsistent or corrupted state of the
RIB table.

The functions which the application provides are separated in different files. There is a file
especially for handling the BGP connections, but also one for the MRT dump, and one for
the table dump. PyRT does not specify its API anywhere, but there are some comments in
the source code which clarifies what the use of some code is.

When the application was tested, in the week of 17th February, it crashed when it
connected to a peer. Since there are not any updates available, and it seems that it is not
that actively used, it is not a really feasible solution.

Pros
• Can save received information to a MRT-formatted file
• Can be a multi-process application when it is started multiple times with a different peer

to connect to
• A process-per-peer model

Cons
• Last update was on the May 5th 200242

• Crashes when it connects with a peer
• Does not send keepalives according to the to do section43 and does not send keepalive

messages automatically44

• It is a listener, does not send prefixes
• If it receives invalid attributes it will close the connection or hang
• No eBGP multi-hop feature
• Not really scalable, connection gets closed since it is not sending keepalive messages.

Only receiving initial RIB tables then eventually the connection will get closed.

Most of the statements that are made above relies on the information that is available in
the comments of the source or the ‘README’ file45.

Research RIS Route Collector! !

38

42 For more information, please download the package and read the ChangeLog: https://
research.sprintlabs.com/pyrt/results/pyrt-2.5.tar.gz (PyRT)
43 For more information, please visit the following website: https://github.com/mor1/pyrt/
(PyRT Github page)
44 When you take a look at the while loop, it is not sending any keepalive messages:
https://github.com/mor1/pyrt/blob/master/bgp.py (PyRT, Github, 02-12-2013)
45 For more information, please read the following ‘README’: https://github.com/mor1/pyrt/
blob/master/README (PyRT)

https://research.sprintlabs.com/pyrt/results/pyrt-2.5.tar.gz
https://research.sprintlabs.com/pyrt/results/pyrt-2.5.tar.gz
https://research.sprintlabs.com/pyrt/results/pyrt-2.5.tar.gz
https://research.sprintlabs.com/pyrt/results/pyrt-2.5.tar.gz
https://github.com/mor1/pyrt/
https://github.com/mor1/pyrt/
https://github.com/mor1/pyrt/blob/master/bgp.py
https://github.com/mor1/pyrt/blob/master/bgp.py
https://github.com/mor1/pyrt/blob/master/README
https://github.com/mor1/pyrt/blob/master/README
https://github.com/mor1/pyrt/blob/master/README
https://github.com/mor1/pyrt/blob/master/README

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements of
anchor/beacon IP

PyRT is only a BGP listener and does not
announce prefixes.

--

M2 MRT-formatted
files

It dumps the updates in an MRT-formatted
file.

++

M3 Raw data Is stored in the dump files. ++

M4 BGP metadata Not all messages are adhered and parsed.
Not all information is received and put into
the MRT dumps.

--

M5 Ordering It dumps the updates sequentially into the
MRT-format.

+

M6 Less delay It only writes to a file, same concept would
be used.

-

M7 Same attributes Same attributes are stored into the MRT-
formatted files.

++

M8 eBGP multihop It does not provide a feature for eBGP multi-
hop.

--

M9 Scaling It can only connect with one peer and does
not send any information back (keepalives).

--

Should:

S1 Live data stream Puts all updates into a file. Need to create a
module which retrieves this information and
places it into a queue.

+

S2 Integrity of data No keepalives are sent after the connection
is established. Connection could get torn
down which can result in an incomplete RIB.

--

S3 Extensible It is open source and it is possible to create
modules. A default installation does not work
which needs to be fixed first, then needs to
be checked if it supports AS 4 byte numbers.

--

Could:

C1 High resolution
timestamp

Not supported, need to modify the source
code, but support high time stamps in MRT.

-

C2 Authorisation &
encr.

Not a feature, but could use SSH tunnel. +

Research RIS Route Collector!

39

7.9. BMP (BGP Monitoring Protocol)
Another solution could be the use of the BGP Monitoring Protocol (BMP) that is supported
by Cisco and Juniper. It is specifically designed to monitor the BGP updates and states of
peers. All messages that are stored in the Adj-RIB-In of the neighbour will be sent to the
monitoring station, which then sends the message to the server for further processing. The
BGP update messages received by the peer will be encapsulated in Route Monitoring
messages.

The only drawback is that BMP is not widely in use today and that there are not many
BMP clients or servers. This requires a lot of effort to receive and process the data as is
required by the requirements.

Pros
• Using a protocol that is specifically designed to suit our desires
• Does not interfere with the routing engine, so you can use it on your production router46

Cons
• Need to buy hardware that supports BMP
• Not used in general
• Neighbouring peers must support this feature
• Not many BMP servers available
• It is still a draft47

• Need to create an application that generates the MRT formatted files

Research RIS Route Collector! !

40

46 It is stated in the draft that is is minimally service-affecting. For more information, please
read the following website: http://tools.ietf.org/html/draft-ietf-grow-bmp-07 (BMP, IETF,
draft)
47 Current version is available on the following website: http://tools.ietf.org/html/draft-ietf-
grow-bmp-07 (BMP, IETF, draft)

http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements of
anchor/beacon IP

Not supported by BMP itself, this needs to
be done by another process on the router

-

M2 MRT-formatted files Not supported by BMP on the routers --

M3 Raw data Is stored in the BGP Update messages --

M4 BGP metadata This protocol is especially developed to re-
ceive information about BGP.

++

M5 Ordering There is no requirement on the ordering of
messages in the peer dumps

--

M6 Less delay All the information is saved on the router it-
self and not transmitted to or dumped into
another process. Need to retransmit the traf-
fic to another application

-

M7 Same attributes Stored in the raw updates ++

M8 eBGP multihop There is nothing noted in the draft that ex-
plicitly requires a peer to connect with a local
neighbour

++

M9 Scaling It is a really lightweight process on the rout-
ers itself as its utilisation is limited

+

Should:

S1 Live data stream BMP does not provide a client with a live
data stream. The peer should attempt to
generate updates as soon as they are re-
ceived by the peer.

--

S2 Integrity of data It also sends the raw BGP Update message,
authentication to this data needs to be pro-
vided by a separate application

+

S3 Extensible Need to develop an in house application that
provides this extensibility

--

Could:

C1 High resolution
timestamp

Not supported by BMP on the routers, hard
to change the OS of the routers

--

C2 Authorisation &
encr.

Not a feature, but could use SSH tunnel +

Research RIS Route Collector!

41

7.10.Ryu
Ryu is a component-based software defined networking framework that is actively
maintained by a community. It is a framework that can be used to receive BGP updates
and do further processing with this data. In order to support such a case, an application
must be developed which uses the Ryu framework.

Ryu uses multiple processes and threads to provide all the functionalities. There is a lot of
documentation describing their API and how it can be used in another program. It has a
BGP parser and serialiser to perform the decoding and encoding of the BGP packets. The
following image shows the components and libraries that are included in Ryu48:

To maintain the RIB state, information needs to be retrieved from Ryu by another
application. This application should also maintain state and process the messages. Other
‘possible alternatives’ already provide similar functionalities and does not require that the
application should maintain the BGP connection.

Research RIS Route Collector! !

42

48 Image acquired from the following website: http://osrg.github.io/ryu/slides/ONS2013-
april-ryu-intro.pdf (26-02-2014)

http://osrg.github.io/ryu/slides/ONS2013-april-ryu-intro.pdf
http://osrg.github.io/ryu/slides/ONS2013-april-ryu-intro.pdf
http://osrg.github.io/ryu/slides/ONS2013-april-ryu-intro.pdf
http://osrg.github.io/ryu/slides/ONS2013-april-ryu-intro.pdf

Pros
• Active community
• Regularly updated
• Framework written in Python
• Ability to create our own BGP implementation

Cons
• Need to write our own module to save the received route information in an intermediate

form
• Some other applications already provide us with more features and already handle the

BGP connections
• It requires more work to suit all our wishes, since the application that needs to be

developed, also needs to maintain the BGP connection

Research RIS Route Collector!

43

MoSCoW comparison
This subchapter compares the possible alternative with the MoSCoW scheme.
Must: Description Score

M1 Announcements
of anchor/beacon
IP

As it is a library our own application must cre-
ate this functionality relying on the library to
create the packets

-

M2 MRT-formatted
files

Need to create our own module to dump all
updates into a MRT-formatted file

--

M3 Raw data It is an API so it is very flexible. Our own ap-
plication can store the raw update somewhere

-

M4 BGP metadata As it is a library our own application must
store the metadata somewhere

-

M5 Ordering Needs to be done by our own application -

M6 Less delay Because it is an API, it depends on our own
program if it involves less delay.

+

M7 Same attributes Need to be facilitated by our application -

M8 eBGP multihop As it is a library, our own application must cre-
ate this functionality using the library

--

M9 Scaling Because it is an API, it depends on our own
program if it could be scalable.

+

Should:

S1 Live data stream Every packet can be received by our own ap-
plication. It is a design decision if a live data
stream is provided by our in house developed
application

+

S2 Integrity of data Depends on our own application, if it proc-
esses every update and provides a feature for
authorisation

+

S3 Extensible It is an API and our own application could be
extensible

++

Could:

C1 High resolution
timestamp

Need to be facilitated by our own application,
requires a lot of effort

-

C2 Authorisation &
encr.

Not a feature, but could use SSH tunnel +

Research RIS Route Collector! !

44

7.11.Summary
This subchapter will give the reader a quick overview of the total score of every possible
alternative.

The total score is listed below in a diagram:

Possible
alternative

Score ++ (+2) Score + (+1) Score - (-1) Score -- (-2) Total score

Custom so-
lution with
ExaBGP

6 6 1 1 15

BGPmon 6 2 3 3 5

OSR
Quagga

7 1 1 5 4

BIRD Inter-
net Routing
Daemon

8 1 4 1 11

OpenBGPD 8 1 2 3 9

XORP 3 3 4 4 -3

Vyatta 7 1 2 4 5

PyRT 3 3 2 6 -5

BMP (BGP
Monitoring
Protocol)

3 3 2 6 -5

Ryu 1 5 6 2 -3

The following points are given to get to a total score:
• ++ is worth 2 points
• + is worth 1 point
• - is worth -1 point (subtraction)
• -- is worth -2 points (subtraction)

Be aware that the total score is not the only criteria that is used to draw a conclusion. It is
really important that the ‘must have’ requirements can be all met, otherwise the application
will miss some requirements that are the most important ones.

Research RIS Route Collector!

45

8. Other modules/implementations
This chapter will describe other modules or implementations that are needed to deliver a
complete product49. Some applications require other software or products to be able, for
example, to do further processing.

8.1. Queueing mechanisms
This chapter will describe the queueing mechanisms that could be used when another
program/module wants to put all the updates into a queue. The queueing mechanisms that
are described in subsequent chapters are the most known well-used queueing
mechanisms that are available.

8.1.1. Apache Kafka
Apache Kafka is a queueing system that originates from a LinkedIn project to build a more
scalable queueing system which can handle more requests than other traditional systems
back then. They have used the system in production and open sourced the code, Apache
Kafka took the project and it is now an ‘incubated’ project50.

As Apache Kafka advertises itself, it is a high-throughput distributed messaging system
that can handle more requests than their competitors51. Kafka works with Zookeeper to be
able to create a cluster of Kafka servers and provides a user with different topologies. A
user can create different topics, let’s say per RRC, and can create multiple partitions, let’s
say a peer neighbour. A single partition must fit on the server that hosts it, but an arbitrary
amount of partitions can be created and can be replicated to other servers. One server
always acts as the leader, and several other servers can act as followers. When the leader
crashes, one of the other followers will take over his role. No data is lost in this case and
the consumer can still retrieve the information that exist in these queues. Contents of the
messages are saved on disk, which can be configured, so if one machine crashes it can
create the queue as it was based on the contents of the backup file. Data that is stored in
a partition is always in an ordered sequence.

When a consumer retrieves information from a queue, the message will still exist after the
consumer has completed the task. This makes it possible to retrieve the information using
another consumer, or to re-read messages when a consumer wants to do so.

When a producer wants to add messages to the queue, it can wait for an
acknowledgement from Kafka. In this way it will know if the message has been added to
the queue. From a consumer’s point of view, it can periodically commit its offset to
Zookeeper.

Research RIS Route Collector! !

46

49 Only the implementations that made a reference to this chapter
50 For more information about the incubation process of Apache, please visit the following
website: https://incubator.apache.org/incubation/Process_Description.html
51 For more information, please visit the following websites: http://www.quora.com/
RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-
features, http://www.slideshare.net/charmalloc/apache-kafka

https://incubator.apache.org/incubation/Process_Description.html
https://incubator.apache.org/incubation/Process_Description.html
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.slideshare.net/charmalloc/apache-kafka
http://www.slideshare.net/charmalloc/apache-kafka

8.1.2. ! RabbitMQ
RabbitMQ is an open source message broker software that uses the Advanced Message
Queueing Protocol (AMQP). It is written in Erlang and is built on the Open Telecom
Platform framework and is released under the Mozilla Public License. Rabbit Technologies
Ltd. develops and provides support for RabbitMQ. Rabbit Technologies was founded in the
year 2007 and was back then a joint venture between LShift and CohesiveFT. It was
acquired in April 2010 by SpringSource, which is a division of VMware and it became part
of GoPivotal in May 2013.

RabbitMQ can process less messages per second than Kafka can, but it is a very solid
implementation of a message queue. It provides both at the producer’s and consumer’s
side features to acknowledge the push-and-retrieve operations. Using these
acknowledgements the producer is assured that RabbitMQ has received and processed
the message. The consumer acknowledges it when it has received the message and after
this acknowledgement the message will be deleted from the queue.

It is possible to create a cluster of RabbitMQ servers, but messages are not replicated
among the other server on default. RabbitMQ allows to mirror the queues among the other
servers and create a master/slave topology. If the master crashes, one of the eldest
servers will become the master, but it is possible that some messages are re-delivered to
the queue, due to the fact that their acknowledgements have not been received by the
master and the messages were simply not removed from the queue.

Messages are written to disk, so when there is a power failure, RabbitMQ will read the
content of the queues from disk. The producer has only to implement the publisher’s
confirmations to be assured that the messages have been written to disk. It also supports
SSL for securely transmitting the messages and authentication to give access only to the
machines which may access the queues.

Research RIS Route Collector!

47

8.1.3. HornetQ
HornetQ is an open source project for building a multi-protocol, embeddable, very high
performance, cluster, asynchronous messaging system from JBoss. The code base was
originally developed under the name JBoss Messaging 2.0. It started with Tim Fox as the
project leader52. The current project leader is Clebert Susconic with his core engineers
Andy Taylor, Francisco Borges, Howard Gao, and Jeef Mesnil. The project itself was
released on 24 August 2009.

HornetQ supports the Stream Text Oriented Messaging Protocol (STOMP) and is JMS
compliant. It has the capability to create clusters and messages which can be replicated
among other servers. To create a cluster a user can either configure the servers to form a
cluster, or a user can use the server discovery feature. If server discovery is enabled, the
servers will propagate its connection details to other servers. This requires less
configuration than the manual configuration.

The project praises itself for their fast journaling system. They say that the journaling
system is faster than their competitors 53. In case the server crashes, it will be faster up
and running than other queueing/message brokers implementations.

When a consumer retrieves information from a queue, HornetQ will automatically delete
the message. The consumer has to send an acknowledgement before the message gets
deleted from the queue.

8.1.4. ØMQ/ZeroMQ
ØMQ, also known as ZeroMQ, is a high-performance asynchronous messaging library
which can be used in scalable or concurrent applications. The library provides a message
queue, but unlike message-oriented middleware, a ØMQ system does not need a
dedicated message broker. The library is designed to have a familiar socket-style API.

It is developed by a large community of contributors which is originally founded by iMatix
Corporation. iMatix holds the domain name and the trademarks and have third-party
bindings for many popular programming languages.

As it is a library, it depends on our own implementation if it will support clustering and
replication. It will involve more work, since the whole queue facility has to be developed.
On the other hand, it allows us to create a queueing solution that is developed to meet our
requirements.

Research RIS Route Collector! !

48

52 Until October 2010
53 For more information about the journaling system, please visit the following websites:
https://community.jboss.org/wiki/HornetQFeatures, http://hornetq.blogspot.nl/2009/08/
persistence-on-hornetq.html (21-02-2014)

https://community.jboss.org/wiki/HornetQFeatures
https://community.jboss.org/wiki/HornetQFeatures
http://hornetq.blogspot.nl/2009/08/persistence-on-hornetq.html
http://hornetq.blogspot.nl/2009/08/persistence-on-hornetq.html
http://hornetq.blogspot.nl/2009/08/persistence-on-hornetq.html
http://hornetq.blogspot.nl/2009/08/persistence-on-hornetq.html

9. Conclusion
This chapter draws a conclusion from the information that has been outlined in earlier
chapters.

9.1. Total score overview
The following diagram will show a total overview of the scores that are listed in the
MoSCoW scheme per ‘possible alternative’:

Possible
alternative

Score ++ (+2) Score + (+1) Score - (-1) Score -- (-2) Total score

Custom so-
lution with
ExaBGP

6 6 1 1 15

BGPmon 6 2 3 3 5

OSR
Quagga

7 1 1 5 4

BIRD Inter-
net Routing
Daemon

8 1 4 1 11

OpenBGPD 8 1 2 3 9

XORP 3 3 4 4 -3

Vyatta 7 1 2 4 5

PyRT 3 3 2 6 -5

BMP (BGP
Monitoring
Protocol)

3 3 2 6 -5

Ryu 1 5 6 2 -3
The following points are given to get to a total score:
• ++ is worth 2 points
• + is worth 1 point
• - is worth -1 point (subtraction)
• -- is worth -2 points (subtraction)

The ‘possible alternative’ with the highest score is the custom solution that uses ExaBGP
as its core. This is a criterion which can be used to evaluate what is the best solution to
use as an alternative. Another criterion is, if it is possible at all, to develop and deploy a
prototype that is based on this ‘possible alternative’. To measure, if this is possible indeed,
the scores in the diagram above are used as the score also reflects how much work need
to be done in order to meet all the requirements.

Research RIS Route Collector!

49

Be aware that the total score is not the only criteria that is used to draw a conclusion. It is
really important that the ‘must have’ requirements can be all met, otherwise the application
will miss some requirements that are the most important ones.

9.2. Conclusion
The conclusion of the above is to use the custom solution based on ExaBGP. It is a very
extensible, open source, and lightweight application. It does its job, which is to give
another program its output and that program should do the further processing.

Every possible alternative is compared with the requirements that are listed in the
MoSCoW scheme. This is to get a good overview if all the requirements can be met and if
much effort must be done to meet all the requirements. What also needs to be considered
as an important criterion is, if all the ‘MUST’ requirements can be met.

Not all the requirements are met when ExaBGP is used as a standalone application.
Another application needs to be developed to do the further processing and that meets
some of the “must” requirements. To meet all the “must” requirements it also involves
modifying the source code. But when you look at the overall picture, ExaBGP is more
flexible and extensible than the other applications and it is possible to meet all the ‘must’
requirements. It allows RIPE NCC to use this implementation even if the use cases will
differ in the next years to come. As a side note, the original developer of ExaBGP has
shown interest to add the requested features in ExaBGP.

The conclusion of this report is:
“The best alternative is ExaBGP, but some modification is required, as well as some other
applications that need to be developed. It is advised to develop a prototype to see if all
requirements can be met and if it is the alternative as we have outlined in this research
report.”

9.3. Evaluation
The reason for not choosing one of the other possible alternatives is related to the
requirements list. For all the possible alternatives, more work is required to meet the
requirements. Some of the possible alternatives do not provide us with the basics, this is
the case with Ryu where an application needs to be developed that maintains state. The
other possible alternatives will require a same implementation that is used now with
Quagga. It will lead to a batch oriented process while it is preferred to go to a stream
oriented process. Some other alternatives are still drafts or not mature enough to use right
now, but it could be promising for in the future (i.e., the BMP protocol). Therefore, the
conclusion, which is described above, is that ExaBGP is the ‘possible alternative’ that
should be used.

Research RIS Route Collector! !

50

10.Proposal
This chapter describes the proposal that follows the conclusion which has been outlined in
the previous chapter.

10.1.Custom solution using ExaBGP
As explained in the previous chapter, the best alternative is ExaBGP with a queueing
mechanism. Some additional components need to be developed that rely on a queueing
mechanism.

Multiple queueing solutions were evaluated during the research stage. The best queueing
mechanism that could be used in the new implementation is Apache Kafka. The most
important argument is that it provides the ability for a consumer to re-read packets from
the queue. This can be useful in cases were multiple consumers want to read packets
from a queue without destroying the data that is stored in this queueing mechanism. In our
case, this would be useful if an API is provided to the community. The community can then
create a tool that uses this API.

The following needs to be done to meet all the must requirements:
• State machine; a RIB state needs to be created, which is not done by ExaBGP, this

information is used to create a RIB dump;
• MRT formatted files; application that retrieves information from the queue and stores it in

a MRT formatted dump file;
• BGP metadata; provided by ExaBGP but must be stored somewhere, is also vital to

create a RIB-state (if a connection to a peer is lost, the RIB entries from that peer must
be flushed);

• Ordering; ExaBGP needs to add a sequential serial number in its output;
• Less delay; mechanism that inserts the data directly into the database;
• RAW data; must be added to the output or be able to receive this.

Research RIS Route Collector!

51

If all the “must” requirements must be met, it requires developing an application for putting
all the ExaBGP messages in a queue system, which can be later on retrieved for further
processing. The following image will give the reader a total overview of the system that
needs to be developed.

Another separate application retrieves information from the queue, creates a RIB state and
stores this in a MRT formatted file. The MRT formatted file contains all updates that were
received during the interval. As explained earlier, there is also a separate file, which
contains the RIB state which is formatted in a MRT format. This application could be
configured to do this periodically, and efficiency could be gained in the way the MRT
formatted file is created. This could reduce the latency, which is involved in the current
implementation.

Research RIS Route Collector! !

52

The information that is stored in the queue must also contain the BGP state messages and
could be stored in a separate topic. Delay is involved when the MRT formatted files are
copied from the “state formatter” to Alpaca, and later on, copied to HDFS. To overcome
this delay, an application needs to be developed, which directly inserts the information into
the database.

10.2.Producer
The application, which receives the information from ExaBGP on the RRC itself, must
provide a mechanism to store all the information that it received from ExaBGP whenever it
cannot connect to Zookeeper/Kafa. This is illustrated in the following image.

Research RIS Route Collector!

53

The application will use multiple threads to process all information that it receives from
ExaBGP. This is illustrated in the following image.

This keeps all the functions separated from each other. There are three threads that
provide the following functions:
• Receiver: Sending the received information, from ExaBGP, to a producer queue
• Producer: Put the information into the queue system or pass the information to another

thread if the queue cannot be reached. If the queue is reachable again it will put all the
locally stored information in the queue first before it puts the new information into the
queue

• Store: If the queue cannot be reached this thread will save all the information in another
queue or store the information locally on disk.

Research RIS Route Collector! !

54

10.3.State formatter
Another application needs to be developed that retrieves the information, from the same
queue, and creates a RIB state. This is illustrated in the following image:

The application will receive the information from the queue and stores it in a local queue.
After a configurable amount of time it will create two MRT formatted files. One which
contains all the updates that ExaBGP received and one that holds the complete RIB state.
These MRT formatted files are then copied to Alpaca that stores these MRT formatted files
on its NFS-share. This is done to maintain the MRT formatted files that are used by the
community, but also by other programs that do further processing on them and insert it into
the HBase database. It allows the currently existing mechanisms to continue working and
maintains backwards compatibility.

Research RIS Route Collector!

55

10.4.HBase consumer
To reduce the latency even more, it would be useful to insert the updates straight into
HBase, which is illustrated by the following image:

The information that is retrieved from the queue is directly inserted in HBase using Thrift
as its ‘gateway’. It will also create a RIB state so that it can periodically save a complete
RIB state in HBase, this is also done in the current implementation.

It is basically the same functionality, besides from inserting it into HBase, as the “state
machine”. The reason that this application does not rely on the data from the “state
formatter” is that it could be the case that the MRT formatted files might be deprecated in
future. If this is the case, the whole “state formatter” does not need to be any longer used
as it does not have any dependencies. There is also the case of locking that might be
involved if the HBase consumer relies on the data in the state machine. This involves
complexity and could cause race conditions in the HBase consumer if it is not
implemented correctly.

If there is an API that relies on the data from the state machine, it could rely on the data of
this application or use the state machine in another program.

Research RIS Route Collector! !

56

10.5.Queue
The queueing system is a very important part of the overall working of the prototype too, it
is the central system where all information is logged and that lends itself to be used as an
inter-process communication (IPC) mechanism. For example, producers write their status
information to a specific topic. This information is used by the consumer to detect the
RRCs that are alive and the ones that publish the information. Then the consumer can
look at the ‘Consumer control queue’ to see if all the information that is published by a
specific RRC is also processed by another queue. When a new RRC comes online it can
register itself to the control queue of all RRCs, the consumers see this and a consumer
can subscribe to the topics, that the specific RRC has created, and process all the
information. When a new RRC is deployed, a consumer does not need to be configured to
subscribe to these topics, but automatically detects it and retrieves the information from
the topics.

The following image illustrates the queue mechanism:

The auto-detection and subscription mechanism is not implemented in the prototype, but
the queue system and prototype will be constructed to facilitate such a need for the future.

The queues of the RRC are divided in multiple partitions, this is for the sake of scalability.
If there is only one partition per RRC the system does not provide us with the scalability
that is needed in the RIS project. All these different partitions are stored in, for example the
RRC01 control queue, so that the consumers know how many partitions there are and the
sequence ID that is stored in a specific partition.

Research RIS Route Collector!

57

10.6.Developer planning
This chapter will describe the planning of the development stage.

The planning will be divided in several stages as outlined in the following table:
Stages Description Estimated

time

Stage 1
Preparation

Virtual Machines: Virtual machines need to
be created to use it as a development
environment. The applications will be
developed on these virtual machines but are
also tested.
Involves: Installing Virtual Machines,
Zookeeper/Kafka, HBase, ExaBGP,
libbgpdump.

1 week

Stage 2
ExaBGP and Kafka

Change ExaBGP code to meet all the “must”
requirements.
Put the messages in the queue system.
Messages must be saved locally if the
connection is lost with Zookeeper/Kafka.
Add keepalive messages to the output/BGP
metadata.

2 weeks

Stage 3
State formatter

Create state machine.
Create code to create MRT-formatted files.

3 weeks

Stage 4
Insert data into HBase

Insert data straight into HBase. 2 weeks

10.7.What is necessary
Multiple virtual machines are necessary to develop and test the code. In the beginning of
the development stage the virtual machines will run on a laptop, but it may be useful if
some parts of the project are installed on a real server. When a real server is used and the
application is tested, some requirements could be set on the required specifications of a
server that must run a RRC.

It must also be possible to connect a test RRC with a test peer. This could be done to
determine the scalability of the application. If the HBase consumer is ready for use, it will
be tested to see if the HBase consumer can insert data in a test setup.

10.8.Note on prototype
The prototype is built to see if it is possible at all to meet all the requirements. It is possible
that the outcome of the prototype is that this is not the perfect alternative as we may have
thought. If this is the case, it should be documented why it is not possible to create an
RRC using ExaBGP and what the recommendations are for the next project.

Research RIS Route Collector! !

58

11.Resources
This chapter lists all the resources that have been used during this project.

Publication of an institute:
• A Guide to the Business Analysis Body of Knowledge, International Institute of Business

Analysis, Whitby, ON (Canada), 2009

Websites:
• http://bird.network.cz/
• http://www.rabbitmq.com/
• http://hornetq.jboss.org/
• http://zeromq.org/
• http://kafka.apache.org/
• https://github.com/Exa-Networks/exabgp
• http://www.openbgpd.org/
• https://github.com/mor1/pyrt/
• http://wwww.opensourcerouting.org/
• http://www.xorp.org/
• http://www.vyatta.org/
• http://osrg.github.io/ryu/
• http://bgpmon.netsec.colostate.edu/

Research RIS Route Collector!

59

http://bird.network.cz
http://bird.network.cz
http://www.rabbitmq.com
http://www.rabbitmq.com
http://hornetq.jboss.org
http://hornetq.jboss.org
http://zeromq.org
http://zeromq.org
http://kafka.apache.org
http://kafka.apache.org
https://github.com/Exa-Networks/exabgp
https://github.com/Exa-Networks/exabgp
http://www.openbgpd.org
http://www.openbgpd.org
https://github.com/mor1/pyrt/
https://github.com/mor1/pyrt/
https://github.com/mor1/pyrt/
https://github.com/mor1/pyrt/
http://www.xorp.org
http://www.xorp.org
http://www.vyatta.org
http://www.vyatta.org
http://osrg.github.io/ryu/
http://osrg.github.io/ryu/
http://bgpmon.netsec.colostate.edu
http://bgpmon.netsec.colostate.edu

Specific page of websites:
• http://www.circleid.com/posts/

ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/ (IETF
chairs statement on security)

• https://github.com/Exa-Networks/exabgp/wiki/RFC-Information (RFCs supported by
ExaBGP)

• http://www.youtube.com/watch?
v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8 (BGPmon
presentation)

• http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf (BGPmon article)
• http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq (BGPmon

peering FAQ)
• https://github.com/opensourcerouting/quagga (Github page of OSR Quagga)
• https://www.nanog.org/meetings/nanog48/presentations/Monday/

Filip_BIRD_final_N48.pdf (Presentation about BIRD and speed comparison)
• http://bird.network.cz/?get_doc&f=bird-3.html#ss3.2 (BIRD configuration options)
• http://opensourcerouting.org/about-us/ (OSR Quagga about-us page)
• http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd.conf (OpenBSD configuration

options for bgp.conf)
• http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd (OpenBSD bgpd options)
• http://read.seas.harvard.edu/~kohler/pubs/xorp-hotnets02.pdf (XORP paper)
• https://github.com/wmiltenburg/xorp_documentation/blob/master/bgp/bgp.pdf (XORP

BGP documentation)
• http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/2009-November/002229.html

(XORP message about RIB)
• http://www.vyattawiki.net/wiki/Quagga (Page describing the change from XORP to

Quagga)
• http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-

leader-in-s-nasdaq-brcd-0949599#.U5Wj5pSSyf9 (Information about Brocade acquiring
Vyattta)

• http://www.brocade.com/products/all/network-functions-virtualization/product-details/
5400-vrouter/index.page (Vyatta page)

• https://github.com/mor1/pyrt/blob/master/bgp.py (The bgp.py file that shows how it
creates the MRT objects)

• https://github.com/mor1/pyrt/blob/master/README (README file of PyRT)
• http://osrg.github.io/ryu/slides/ONS2013-april-ryu-intro.pdf (Ryu introduction

presentation)
• https://incubator.apache.org/incubation/Process_Description.html (Incubation process

description of Apache)
• http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-

with-good-query-features (Information about RabbitMQ and Kafka)
• http://www.slideshare.net/charmalloc/apache-kafka (Information about Kafka

performance)
• https://community.jboss.org/wiki/HornetQFeatures (Feature list of HornetQ)
• http://hornetq.blogspot.nl/2009/08/persistence-on-hornetq.html (Presistence in HortnetQ)

RFCs/drafts:
• https://tools.ietf.org/html/rfc6396 (MRT RFC)
• http://tools.ietf.org/html/draft-ietf-grow-bmp-07 (BMP, draft)
• http://www.ietf.org/rfc/rfc4271.txt (BGP RFC)

Research RIS Route Collector! !

60

http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
http://www.circleid.com/posts/ietf_chairs_statement_on_security_privacy_and_widespread_internet_monitorin/
https://github.com/Exa-Networks/exabgp/wiki/RFC-Information
https://github.com/Exa-Networks/exabgp/wiki/RFC-Information
http://www.youtube.com/watch?v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8
http://www.youtube.com/watch?v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8
http://www.youtube.com/watch?v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8
http://www.youtube.com/watch?v=8Rqh4p4yzyQ&list=PLO8DR5ZGla8g24mzEdAKZ83byQuA6RIci&index=8
http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf
http://bgpmon.netsec.colostate.edu/download/publications/catch09.pdf
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
https://github.com/opensourcerouting/quagga
https://github.com/opensourcerouting/quagga
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
https://www.nanog.org/meetings/nanog48/presentations/Monday/Filip_BIRD_final_N48.pdf
http://bird.network.cz/?get_doc&f=bird-3.html#ss3.2
http://bird.network.cz/?get_doc&f=bird-3.html#ss3.2
http://opensourcerouting.org/about-us/
http://opensourcerouting.org/about-us/
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd.conf
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd.conf
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd
http://www.openbsd.org/cgi-bin/man.cgi?query=bgpd
http://read.seas.harvard.edu/~kohler/pubs/xorp-hotnets02.pdf
http://read.seas.harvard.edu/~kohler/pubs/xorp-hotnets02.pdf
https://github.com/wmiltenburg/xorp_documentation/blob/master/bgp/bgp.pdf
https://github.com/wmiltenburg/xorp_documentation/blob/master/bgp/bgp.pdf
http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/2009-November/002229.html
http://mailman.icsi.berkeley.edu/pipermail/xorp-hackers/2009-November/002229.html
http://www.vyattawiki.net/wiki/Quagga
http://www.vyattawiki.net/wiki/Quagga
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5Wj5pSSyf9
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5Wj5pSSyf9
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5Wj5pSSyf9
http://newsroom.brocade.com/press-releases/brocade-acquires-vyatta-a-pioneer-and-leader-in-s-nasdaq-brcd-0949599#.U5Wj5pSSyf9
http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
http://www.brocade.com/products/all/network-functions-virtualization/product-details/5400-vrouter/index.page
https://github.com/mor1/pyrt/blob/master/bgp.py
https://github.com/mor1/pyrt/blob/master/bgp.py
https://github.com/mor1/pyrt/blob/master/README
https://github.com/mor1/pyrt/blob/master/README
http://osrg.github.io/ryu/slides/ONS2013-april-ryu-intro.pdf
http://osrg.github.io/ryu/slides/ONS2013-april-ryu-intro.pdf
https://incubator.apache.org/incubation/Process_Description.html
https://incubator.apache.org/incubation/Process_Description.html
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.quora.com/RabbitMQ/RabbitMQ-vs-Kafka-which-one-for-durable-messaging-with-good-query-features
http://www.slideshare.net/charmalloc/apache-kafka
http://www.slideshare.net/charmalloc/apache-kafka
https://community.jboss.org/wiki/HornetQFeatures
https://community.jboss.org/wiki/HornetQFeatures
http://hornetq.blogspot.nl/2009/08/persistence-on-hornetq.html
http://hornetq.blogspot.nl/2009/08/persistence-on-hornetq.html
https://tools.ietf.org/html/rfc6396
https://tools.ietf.org/html/rfc6396
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4271.txt

12.Appendix
This chapter is used to store all appendixes.

12.1.MoSCoW

MoSCoW, also known as MoSCoW prioritisation or MoSCoW analysis, is used to reach an
understanding about the importance that all stakeholders have on a requirement.

The MoSCoW contains the following categories according to A Guide to the Business
Analysis Body of Knowledge54:

Must: Describes a requirement that must be satisfied in the final solution for the solution to
be considered a success.

Should: Represents a high-priority item that should be included in the solution if it is
possible. This is often a critical requirement but one which can be satisfied in other ways if
strictly necessary.

Could: Describes a requirement which is considered desirable but not necessary. This will
be included if time and resources permit.

Won’t: Represents a requirement that stakeholders have agreed will not be implemented
in a given release, but may be considered for the future.

Note: Sometimes the word “Would” is substituted for “Won’t.”

Research RIS Route Collector!

61

54 A Guide to the Business Analysis Body of Knowledge, International Institute of Business
Analysis, Whitby, ON (Canada), (2009, page 102)

