
RIPE Network Coordination Centre
www.ripe.net

Hogeschool van Amsterdam
www.hva.nl

Replacement of RIS Route Collectors
February - July 2014

W.A. Miltenburg
RIPE NCC

GII team
Supervisor RIPE NCC : C. Petrie

Supervisor HvA: D. van der Meer

http://www.ripe.net
http://www.ripe.net
http://www.hva.nl
http://www.hva.nl

Student information:
W.A. Miltenburg
Student number: 500617246
+31 (0)6 538 08 698

School:
Hogeschool van Amsterdam
Information Technology & Computer Science
System and Network Engineering
Duivendrechtsekade 36-38
1114AD Amsterdam-Duivendrecht
The Netherlands
+31 (0)20 595 1610
Supervisor: D. van der Meer
School period: 2013-2014

Company:
RIPE NCC
Global Information Infrastructure (GII)
Singel 258
1001EB Amsterdam
The Netherlands
+31 (0)20 535 4444
Supervisor: C. Petrie

This bachelor thesis was written during my graduation project, second semester, at RIPE
NCC from the beginning of February till the first week of July 2014.

2

Preface
This bachelor thesis is part of the graduation project of Wouter Miltenburg, which was from
February till the end of June. During the graduation project I have worked for the RIPE
NCC and worked on the project ‘Replacement of RIS Route Collectors’.

In this preface I want to thank my supervisor Colin and the GII manager Romeo for their
support and help during this project. It is not only these two people that I want to thank for
their help, but also the rest of the GII and R&D team, people who I have interviewed and
the rest of the RIPE NCC. I also want to thank the community of RIPE, which uses and
supports the RIS project, and makes all of this possible.

The last person I want to thank is Douwe from the Hogeschool van Amsterdam. Not only
for the effort and the help that I got during this project, but also for the help during my
school period.

Wouter Miltenburg

May 2014

3

Table of Content
..Summary! 9

1. ..Introduction! 10

2. ..Background! 11

2.1. ..Organisation! 11

2.2. ...GII! 12

2.3. ..Original assignment! 13

2.4. ...Analysing the assignment! 13

2.4.1. ..Analyses of Internet Routing! 13

2.4.2. ...IP hijacking detection! 13

2.4.3. ...Capability to view the live RIB state! 14

2.5. ..Evolving requirements! 14

2.6. ..Definitive assignment! 14

2.7. ..Subquestions! 14

2.8. ..Personal goal! 14

2.9. ..Skills! 15

2.10. ..Planning! 15

2.11. ...Note on prototype! 15

2.12. ..Abbreviations! 16

3. ..Current implementation! 17

3.1. ...Delay! 17

3.2. ...Quagga! 17

4. ..Research methodology! 18

4.1. ..Main question! 18

4.2. ...Process! 18

4.3. ...MoSCoW scheme! 18

4.4. ...Disclaimer! 18

5. ...Requirements definition! 19
4

5.1. ..Description! 19

5.2. ..Composition of MoSCoW scheme! 19

5.3. ...MoSCoW scheme! 20

5.4. ..Out of scope! 21

6. ..Research phase! 22

6.1. ...Conditions that must be met! 22

6.2. ...In scope projects! 22

6.3. ...Other modules/implementations! 25

6.4. ..Research! 25

7. ..Conclusion of research! 26

7.1. ...Total score overview! 26

7.2. ..Conclusion! 27

8. ..Proposed solution! 28

8.1. ..Custom solution using ExaBGP! 28

8.2. ...Producer! 30

8.3. ..State formatter! 31

8.4. ..HBase consumer! 32

8.5. ..Queueing system! 33

8.6. ...Developer planning! 34

8.7. ...What is necessary! 34

9. ..Development! 35

9.1. ...Process! 36

9.2. ...Preparation! 36

9.3. ..ExaBGP and RabbitMQ! 37

9.3.1. ..ExaBGP modifications! 37

9.3.2. ...Producer general information! 38

9.3.3. ...Producer processes! 38

9.3.4. ..Producer IPC! 39

5

9.3.5. ...Producer messages! 41

9.3.6. ..Tests performed! 41

9.3.7. ..Unit tests! 41

9.4. ..HBase consumer! 42

9.4.1.General information HBase consumer! 42

9.4.2. ...Connection with RabbitMQ! 42

9.4.3. ..Connection with HBase! 43

9.4.4. ...HBase consumer structure! 44

9.4.5. ..Unit tests! 45

9.4.6. ..Other tests! 45

9.5. ...State machine! 46

9.5.1. ..General information state machine! 46

9.5.2. ..Update mode! 47

9.5.3. ...RIB mode! 47

9.5.4. ...MRT library! 48

9.5.5. ...State machine structure! 48

9.5.6. ..Flowchart functions! 51

9.5.7. ..Unit tests! 52

9.5.8. ..Other tests! 52

10. ...Deployment and testing! 53

10.1. ...Integrity test! 53

10.2. ..Integrity test with live RRCs! 54

10.3. ...Monitoring! 54

10.4. ..Test setup! 55

10.5. ..Test results! 55

10.5.1. ...Results of the integrity test! 55

10.5.2.Results of the integrity test with live RRCs! 56

10.5.3. ..RabbitMQ performance! 56

6

10.6. ...Conclusions! 57

10.6.1.Announcements of anchor and beacon IPs! 58

10.6.2. ..MRT formatted files! 58

10.6.3. ..Raw data! 58

10.6.4. ..Metadata! 58

10.6.5. ...Ordering! 58

10.6.6. ..Less delay! 58

10.6.7. ..Same attributes! 58

10.6.8. ...Scaling! 58

10.6.9. ...eBGP multihop! 59

10.6.10. ..Live data stream! 59

10.6.11. ..Integrity of data! 59

10.6.12. ..Extensible! 59

10.6.13. ...High resolution timestamp! 59

10.6.14. ...Authorisation and encryption! 59

11. ...Conclusion! 60

12. ...Recommendations! 61

12.1. ...Prototype recommendations! 61

12.1.1. ...Process manager! 61

12.1.2. ..Pipe connections! 61

12.1.3.Implementation of local saved messages! 61

12.1.4. ...Maximum allowed timestamp! 61

12.1.5. ..Less delay! 61

12.1.6. ..Database! 61

12.1.7. ...RabbitMQ acknowledgements! 62

12.1.8. ...Queue deadlock! 62

12.1.9.Multi processes or threads for state machine! 62

12.2. ...Testing recommendations! 62

7

12.2.1. ...Scalability! 63

12.2.2. ..Unknown attributes! 63

13. ...Reflection! 64

13.1. ..Skills! 64

13.1.1. ...I.An3! 64

13.1.2. ...I.Ad3! 64

13.1.3. ..I.On3! 64

13.1.4. ...I.Re3! 65

13.2. ...Reviews! 65

13.3. ..Personal goal! 65

13.4. ...Meetings! 65

14. ..Resource list! 66

15. ..Appendixes! 67

8

Summary
This document is part of the graduation project of Wouter Miltenburg. The topic of the
graduation project is replacing the current Routing Information Service (RIS) collectors that
the RIPE NCC provides as a service to its community. It is a system that collects the
routes, which are used in different systems for further processing. The main question that
the RIPE NCC had was formulated into the following:
“How can the current implementation of the RIS Route Collector be replaced with a better
alternative, aimed to process updates faster, make information easier to integrate in the
RIPE NCC Hadoop storage backends (e.g. through XML, JSON, or YAML), and meet the
gathered requirements?”

The current RIS collectors, based on Quagga, involve a high delay and are facing its limits
with the current number of peers. It is therefore necessary to research a possible
alternative system that could replace the current implementation. The research stage
began with gathering all the requirements from different involved parties. These
requirements are listed in a MoSCoW scheme as a prioritisation scheme and the research
was based on finding a possible alternative that could meet the requirements. During the
research, a possible alternative was created that was based on ExaBGP for the BGP
connections. ExaBGP would create JSON formatted messages, indicating which prefixes it
had received and what the state of the peering relations were. These messages would be
saved in a queue were different consumers could consume the messages from. Since the
old system was based on Quagga, which produced MRT RIB and update dumps, it was
also necessary for the new ‘alternative implementation’ to support this feature. Different
consumers should be created to support all these features.

This possible alternative was chosen as the alternative that met most of the requirements.
It resulted in a development stage where different producers and consumers were created.
The producer would receive messages from ExaBGP and insert them in the queueing
mechanism, which was decided to be RabbitMQ. These consumers would consume
messages from the queues and insert the messages in the Hadoop storage back-end.
Another consumer would maintain the state and generate MRT formatted RIB and update
dump files.

The third stage of the graduation project was to deploy the prototype in a test setup. This
test setup would be used for testing the integrity of the whole prototype and to see if the
state reflects the state of Quagga. The RIB files that would be created by both Quagga
and the prototype were compared to see if the integrity of the files can be guaranteed with
the prototype. The conclusion of this test was that ExaBGP can satisfy the same level of
integrity as Quagga.

The prototype is therefore a possible alternative that, with some more testing, meets the
requirements that were gathered during the research stage. It needs some more testing to
test the throughput and scalability, but it is indeed the alternative that the RIPE NCC was
looking for.

9

1. Introduction
This document is part of the graduation project of Wouter Miltenburg. The graduation
project is part of the study Information Technology & Computer Science at the Hogeschool
van Amsterdam (HvA), from February till the first week of July 2014.

This document gives an overview of how the final result has been created. This document
will also give an overview of which methodologies were used during this project and the
decisions that have been made during the graduation project. The stages that were
involved in this project are being described and the research that has been done is added
as an appendix. The research report itself will be discussed in this document, but if the
reader wants to have a better understanding of the research, or want more information, it
is recommended to read the whole research paper. Also, the development and deployment
of the prototype will be discussed in this paper and the results that came out of this
prototype.

The topic of this graduation project is the Routing Information Service (RIS) that the RIPE
NCC provides as a service to its community. To be more specific, this project is about
replacing the current implementation of the RIS Route Collectors that collects the routes,
which are used in different systems for further processing. It is a system that was launched
in 2001 and started with the idea to collect and store Internet routing data from several
locations around the world. This data, which is collected and saved, can be accessed via
RIPEstat and can be used for further analysis. RIPE NCC also performs analyses on the
data that is collected with the RIS project and publicise the outcomes via RIPElabs. The
Remote Route Collector (RRC), as its name might reveal, is the system that collects all the
Internet routing data from several points around the world and allows other applications or
systems to retrieve this information.

As more peers want to connect to the RRCs, it also takes more and more time to process
all this data. This can cause some problems: people have to wait longer for the data,
analyses have to wait because of the delay, and when IP hijacking occurs you do not know
it immediately.

The first chapter will begin with some background information about the RIPE NCC and
the project. A description of the current implementation is given in the second chapter,
which also describes the problems that the RIPE NCC is facing with this implementation.
The chapters thereafter will describe the research for possible alternatives and the
research methodology that has been used during the research. After the chapters that
outline the research stage, the proposal will be described and outlined. The next two
chapters will outline the development and research stage. The last chapters will be the
conclusion of this project and recommendations for a future project.

10

2. Background
This chapter gives the reader a general overview of the assignment and the reason why
this project has been initiated. This chapter provides the reader with information, which
might be used in subsequent chapters.

2.1. Organisation
The RIPE NCC is one of the five Regional Internet Registries (RIRs) in the world and is
providing its services to Europe, the Middle East and parts of Central Asia. A RIR allocates
and oversees the registration of Internet number resources in its service region. Internet
number resources are IPv4 addresses, IPv6 addresses and Autonomous System (AS)
numbers.

It was established in the year 1992 as a not-for-profit organisation and has grown ever
since. There are current 128FTE working for the RIPE NCC. It also provides technical and
administrative support to RIPE, a forum which is open to everyone who is interested in the
technical development of the Internet.

RIPE NCC currently provides the following services to the community:
• Internet Governance;
• Allocation of IPv4, IPv6 and AS numbers;
• RIPE database;
• RIPE routing history;
• Operation of K-root nameservers;
• ENUM delegations;
• Collecting and publications of Internet Development and performance statistics;
• RIPE Atlas.

11

2.2. GII
The RIPE NCC maintains the following staff structure 1:

Figure 1 - Staff structure of the RIPE NCC

The research, development, and deployment of the prototype was all under the
supervision of the Global Information Infrastructure (GII) team. The primary task of GII is to
maintain the global information infrastructure, which involves the K-root instances. It also
involves maintaining the RIS infrastructure, which is the reason that the project was under
the supervision of the GII Team.

12

1 Image acquired from the following webpage: http://www.ripe.net/lir-services/ncc/staff/ripe-ncc-staff-structure
(RIPE NCC)

http://www.ripe.net/lir-services/ncc/staff/ripe-ncc-staff-structure
http://www.ripe.net/lir-services/ncc/staff/ripe-ncc-staff-structure

2.3. Original assignment
Before the project started, the initial assignment was phrased as:
“How can the current implementation of the RIS Route Collector process be replaced with
a better alternative, aimed to process updates faster and make information easier to
integrate in the RIPE NCC Hadoop storage backends (e.g. through XML, JSON, or
YAML)?”

The following description of this project was included in the application form:
“The current RIS route collection mechanism, based on Linux systems running Quagga
BGP daemons, was developed over 10 years ago. The RIPE NCC Science department
would like to improve the current process to allow for more fine-grained data collection,
instead of the current process that depends on BGP table dumps created at regular
intervals.

This research project focuses on researching an alternative for the RIS route collectors
and aims to develop and build a prototype. This prototype may be released to third parties
and support needs to be provided to internal and potentially external users during this
project.”

During the first weeks, analyses of the assignment were done, which is described in the
next subchapter.

2.4. Analysing the assignment
The current RIS implementation, which is used by the RIPE NCC, was released in 2001.
Back then, use cases and requirements were different from the ones people have now.
The project “Replacement of RIS Route Collectors” has been initiated in the year 2013 and
started in the year 2014. It is aimed to research possible alternatives for the current
implementation but also to develop and deploy a prototype. You could say that the
prototype is a proof of concept. It is used to prove if the proposed alternative can meet all
the requirements and if it is possible to create the proposed alternative.

The use cases that exist now are outlined subsequent subchapters.

2.4.1. Analyses of Internet Routing
People at the RIPE NCC and the community can download the MRT formatted files, which
are provided by the current RIS implementation. These MRT formatted files hold the whole
RIB state for each of the route collectors, or all the update messages that have been
received by the RRC in a given time period. Users can download these files to do research
on routing. For example, when someone wants to know if their prefixes are announced
and are propagating through the network.

Note: This is possible with the current implementation

2.4.2. IP hijacking detection
When someone else is announcing a prefix that has been allocated to a certain entity, one
wants to know this in a short amount of time. The person wants to know which AS is
announcing the prefix and can take action to resolve this issue.

Note: This is not possible with the current implementation. Users have to wait for a long
period before this data is available and it is only useful if this data is available in a short
amount of time.

13

2.4.3. Capability to view the live RIB state
Users can get a live RIB state at any given moment and can see what the state of the RIB
is. This can be useful for users who want to get a live overview of a RIB and want to do
research with it.

Note: This is not possible with the current implementation. Users have to wait for a long
period of time before this data is available.

2.5. Evolving requirements
Since the use cases have differed in the recent years, it is also an indication that the
requirements have been changed. The current requirements are listed in chapter 5.

The current implementation, which will be presented in a subsequent chapter, can not
satisfy all these requirements. A new system that can support such use cases and features
must be first of all extensible and provide us with the information that is processed in a
later stage.

People from the RIPE NCC would already benefit from the fact that if they have access to
an extensible system, which only provides a marginal subset of all these features, but that
allows extra features to be integrated in such a system easily.

2.6. Definitive assignment
After receiving all the requirements and analysing them, the conclusion was that the
assignment differed from the original assignment. A better definition of the assignment is:

“How can the current implementation of the RIS Route Collector be replaced with a better
alternative, aimed to process updates faster, make information easier to integrate in the
RIPE NCC Hadoop storage backends (e.g. through XML, JSON, or YAML), and meet the
gathered requirements?”

2.7. Subquestions
In this research project the traditional main- and subquestion system is not used.

Different people and different departments are involved in this project and have different
ideas and requirements for this project. Therefore, a main- and subquestion system will
not be really helpful to find the best alternative for the current implementation. When a
MoSCoW scheme is implemented, which is filled with requirements that were proposed
during interviews, better research can be done. The MoSCoW scheme will give the
requirements different priorities and is, in this case, a better methodology to use during this
research stage.

2.8. Personal goal
The personal goal of the author of this document was to gain more technical and
professional skills in a multilingual company, like the RIPE NCC, during this graduation
project. Technical skills that were necessary for this project were knowledge about BGP,
RIPE NCC systems, inner workings of systems, and it was also the goal to improve these
technical skills. Professional skills that the author wanted improve on were the
communication skills and writing skills in English that were necessary during the
graduation project.

14

2.9. Skills
The skills that were necessary and described in the application form of this graduation
project are described below2.

• I.An3: An existing, complex, large-scale or worldwide research on technology or
methodology and analysing alternatives;

• I.Ad3: Ability to apply argumentation from a tech, business, costs/benefits, risks and
legislation perspective;

• I.On3: Design a secured, multi-site, worldwide business network including possible
security measures with specialistic and state-of-the-art technology;

• I.Re3: Being able to prepare a customised application for deployment and testing.

2.10. Planning
This table gives a brief overview of the high level planning that was created at the begin of
the project:

Name of stage Brief description Time

Research stage Researching possible alternatives 1 month

Development stage Developing prototype 2 months

Deployment and test stage Deploy prototype 2 months
Table 1 - Initial planning

2.11. Note on prototype
The prototype is built to see if it is possible at all to meet all the requirements. It is possible
that in the end the prototype does not meet the requirements, and that the ‘possible
alternative’ was not as perfect as we may have thought. If this is the case, it should be
documented why it is not possible to create an RRC based on the proposed ‘alternative
implementation’ and what the recommendations are for the next project.

15

2 The skills that are described in this paragraph are from “Bachelor of ICT domeinbeschrijving” and have
been translated to English: Schagen, J.D, van der Kwaak, W., Leenstra E., Smit. W. en Vonken F. Bachelor
of ICT - domeinbeschrijving, Amsterdam, 2009

2.12. Abbreviations
This table gives a brief explanation of the abbreviation of terms that are used throughout
this paper. If there is an RFC applicable to the explanation it will be listed in the last
column.
Term Explanation RFC

BGP Border Gateway Protocol, an Inter-Autonomous Routing
Protocol used for exchanging network reachability information
with other BGP systems.

4271

FTE Full Time Equivalent. N/A

GIL Python Global Interpreter Lock. Mutex that prevents multiple
threads from executing Python bytecodes at once.

N/A

HBase Hadoop Database. N/A

HDFS Hadoop Distributed File System, is a distributed file system
and is an Apache Hadoop subproject.

N/A

INRDB Internet Number Resource Database, holds datasets from the
RIPE NCC and other entities. There are two clusters, INRDB1
and INRDB2.

N/A

MRT
format

Multi-Threaded Routing Toolkit (MRT) Routing Information
Export Format, format for exporting routing protocol
messages, state changes and routing information.

6396

RIB Routing Information Base, contains routes. There are different
routes per RIB. One for received routes, one for that contains
routes after applying the Decision Process, and one that
contains routes that will be send to other peers in the case of
BGP.

N/A

RIS Routing Information Service. N/A

RIB state Creating a RIB based on the messages received from a peer,
which contains the routes received from a peer.

N/A

RRC Remote Route Collector. N/A

Table 2 - Wordlist

16

3. Current implementation
Several RRCs at different worldwide locations, provide a periodic RIB dump or a dump of
all the received updates during five minute periods. These dump files are saved in a MRT
formatted file and will be periodically synced using rsync to a server called ‘Alpaca’. A NFS
share is mounted on “Alpaca”, which contains all the MRT formatted files. The next step is
to save this information in a database so that it can be retrieved at a later moment.

The current implementation uses Hadoop/
HBase as its database. The MRT formatted
files that are stored on the NFS-share are
copied to HDFS.

From HDFS, the data will be inserted into
HBase that also uses HDFS as its
filesystem. Thrift is used as an API to
access data that is stored in HBase and
that needs to be accessible for public facing
websites (i.e., RIPEstat).

3.1. Delay
One of the issues in the current
implementation, is that there is a lot of delay
involved in the processing part. The data
must be copied several times and needs to
flow to all different subsystems. This is in
fact the main reason why this project has
been initiated in order to develop a
mechanism that will later allow to reduce
the latency.

3.2. Quagga
Quagga is being used to receive all the
BGP updates on the RRCs. It maintains
BGP peering connections with multiple peers. Quagga also introduces some problems.
There have been cases where Quagga missed some of the BGP updates and this caused
a RIB that was not accurate. It is a single threaded application, which does not take
advantage of a system with multiple cores. It also reaches the maximum utilisation of the
single core that it uses and cannot handle any extra peers.

Some of the people at the RIPE NCC do not really trust the RIB dump implementation of
Quagga. There were cases where the RIB table got corrupted or that Quagga missed
updates during those dumps.

17

Figure 2 - High level overview of
current implementation

4. Research methodology
This chapter describes the methodology that was used during the research stage of this
project.

4.1. Main question
This project has been initiated to answer the main question that has been outlined in
chapter 2.6.

To answer this question, the MoSCoW scheme is used to prioritise different aspects of this
project. For example, is less delay more important than an information scheme that is
easier to integrate? In subchapter 4.3 the MoSCoW scheme is introduced and it explains
how it was used in the research stage.

4.2. Process
During the research stage different methodologies were used to gather all the required
information, process the information and research it. It involved gathering information
about the project, understanding RIS, gathering all the requirements by interviewing
people and setting up meetings. All these requirements were prioritised using MoSCoW
and was used to prioritise the different requirements of this project. Most of the research in
the research phase was done be reading documentation and RFCs as part of desk
research.

4.3. MoSCoW scheme
The MoSCoW scheme will give the requirements different priorities and is, in this case, a
better methodology to use during this research stage. It is not the only methodology or
toolkit that was used in this project. A few examples of other methodologies that were used
are desk research and interviewing the stakeholders.

The MoSCoW scheme is also used to see if a possible alternative will meet all the
requirements and how much work needs to be done when a requirements is not met. It is
also used to see if all these requirements can be met with another alternative.

4.4. Disclaimer
The use of this methodology has been approved by the supervisors of this project3.

18
3 During the meeting on Tuesday 11th of February 2014

5. Requirements definition
Different people and different departments are involved in this project and have different
ideas and requirements for this project. Therefore, a main- and subquestion system will
not be really helpful to find the best alternative for the current implementation. When a
MoSCoW scheme is implemented, which is filled with requirements that were proposed
during interviews, better research can be performed. The MoSCoW scheme was used to
prioritise the different requirements.

5.1. Description
MoSCoW, also known as MoSCoW prioritisation or MoSCoW analysis, is used to reach an
understanding about the importance that all stakeholders have on a requirement.

The MoSCoW contains the following categories according to A Guide to the Business
Analysis Body of Knowledge4:

Must: Describes a requirement that must be satisfied in the final solution for the solution to
be considered a success.

Should: Represents a high-priority item that should be included in the solution if it is
possible. This is often a critical requirement but one which can be satisfied in other ways if
strictly necessary.

Could: Describes a requirement which is considered desirable but not necessary. This will
be included if time and resources permit.

Won’t: Represents a requirement that stakeholders have agreed will not be implemented
in a given release, but may be considered for the future.

Note: Sometimes the word “Won’t” is substituted for “Would”.

5.2. Composition of MoSCoW scheme
The MoSCoW scheme, which is presented in the next subchapter, is composed from the
requirements that were received during the research stage. The following categories exist
in the MoSCoW scheme of this project: “Must, Should, Could, Would and Out of scope”.
The category ‘out of scope’ is added because some requirements are not in scope of the
RIS project and are not considered to fit in the ‘would’ category. In a separate subchapter it
will be explained why some requirements are considered to fall under the ‘out of scope’
category.

19

4 A Guide to the Business Analysis Body of Knowledge, International Institute of Business Analysis, Whitby,
ON (Canada), (2009, page 102)

5.3. MoSCoW scheme
The following MoSCoW scheme was used during the research stage of the project.
Must:

Announcements of anchor/beacon IP

MRT formatted files

RAW data

Metadata

Ordering

Less delay

Same attributes

eBGP multihop

Scaling

Should:

Live data stream

Integrity of data

Extensible

Could:

High resolution timestamp

Authorisation and encryption

Would:

None

Out of scope:

Spike detection

Aggregation of data

Correlation between atlas/anchor and RRC data

Separate full feed from partial feed
Table 3 - MoSCoW scheme

The input for these requirements were provided during interviews and meetings. The notes
that were taken during these interviews and meetings can be found in the research paper.
This MoSCoW scheme was present to and approved by the staff of the RIPE NCC during
a meeting about the requirements and priorities5.

20
5 The meeting with the Science Division group was on Thursday 27th of February 2014

5.4. Out of scope
Out of scope means that the requirements are not considered in scope for this or future
projects.

The following requirements are considered out of scope:
• Aggregation of data;
• Correlation between atlas/anchor and RRC data;
• Separate full feed from partial feed6.

The reason that the ‘aggregation of data’ requirement is considered to be out of scope for
this project. It is considered to be more a post-analysing item. The job of the RRCs is to
receive the BGP updates and do further processing. A separate tool or project is needed to
provide an aggregation of data between the RRCs.

The correlation between the Atlas probes, Anchor, and RRC data is also considered out of
scope. This is also considered a post-analysing item which is not the RRC’s job. It can
cause more overhead and the RRC’s job should be clear and should not take extra
overhead to provide such features. There is a considerable chance that because of this
overhead extra delay could be involved.

The ‘separate full feed from partial feed’ requirement is considered to be out of scope of
this project. It can not really be determined on a RRC if a peer is sending a full feed or a
partial feed and there is no standardised way of determining if a peer is sending its full
feed to the RRC. Therefore, this needs to be determined after the routes have been
collected, which is done in the post-processing state of the whole RIS system.

21

6 When a peer sends its full feed the advertised routes are not filtered by the neighbour. With partial feeds
the neighbour filters the routes that are send to the RRC

6. Research phase
This chapter will provide the reader with an overview of which projects or programs were
considered in scope and that were researched during the research stage of this project. All
this information is outlined in the research paper, which gives readers further explanation
about the different projects and contains the original references to statements that have
been made in this chapter.

6.1. Conditions that must be met
A program, or project, is considered in scope when it meets one or several of the
requirements that were gathered during meetings and interviews.

6.2. In scope projects
The following projects or applications have been considered in scope and can be listed as
a ‘possible alternative’:

• Custom solution with ExaBGP;
• BGPmon;
• OSR Quagga;
• BIRD Internet Routing Daemon;
• OpenBGPD;
• XORP;
• Vyatta;
• PyRT;
• BMP (BGP Monitoring Protocol);
• Ryu.

All of the projects that are listed above where found during the research stage of the
project. They were used in other programs or were referenced on several websites. The
following paragraphs will give a brief description of each ‘possible alternative’. All the
information that is presented in the next paragraphs is based on the information from the
research paper. If the reader wants to get a better understanding of the following possible
alternatives, it is advised to read the research paper.

Custom solution with ExaBGP
A custom solution relying on ExaBGP as its core. ExaBGP will receive all BGP packets
and passes them on to another application. This application needs to be developed and
will push the BGP updates it receives from ExaBGP in a queue. It is possible to receive
raw messages from the application’s point of view, which the application can later on store
in a queue system. The queueing systems will be discussed in this chapter as well.

22

BGPmon
BGPmon, not to be confused with the protocol BMP7 or the service BGPmon, is created
with the same philosophy as this project. It is a project that is maintained by the Network
Security Group of Colostate University, which is still actively maintained by this project
group. BGPmon supports MRT files as input, but cannot dump RIBs in a MRT formatted
file. It can connect with multiple peers and the BGP messages that it receives will be
outputted in a XML format. This data can be retrieved from two default ports, 50001 and
50002, which separates the BGP updates form the RIB tables. Raw data is available in the
output that BGPmon produces. It is not possible to announce routes, which is a design
decision of the BGPmon developers, and therefore it is not possible to announce the
anchor or beacon IPs8.

OSR Quagga
The Open Source Routing is supported by the Internet Systems Consortium (ISC) and
aims to support the community in releasing a mainstream, and stable routing code to
enable network innovation. They focus on Quagga and partners with the existing
developers community, independent code committers, service providers and academic
institutions to deliver a higher quality code base for Quagga. Code that is created by the
OSR team will be pushed upstream and will be included in the mainstream releases of
Quagga if they accept it. They also state on their Github account that the code should not
be used in a production environment and advice to use the Quagga mainstream releases
instead.

BIRD Internet Routing Daemon
The BIRD Internet Routing Daemon was developed as a school project at the Faculty of
Math and Physics of the Charles University of Prague. It received contributions from Martin
Mares, Pavel Machek and Ondrej Filip and is now sponsored by CZ NIC Labs. The project
aims to develop a fully functional dynamic IP routing daemon primarily targeted on Linux,
FreeBSD and other UNIX-like systems.

OpenBGPD
OpenBGPD is a free implementation of BGP version 4. The project started out of
dissatisfaction of other implementations that existed at that time and is now a fairly
complete BGP implementation. It is used by different users and advertises that users often
praise its ease of use and high performance, a well as its reliability on their website9. The
latest release went live on the 1st of November 2009, which carries the version 4.6.

23

7 For more information about the BMP protocol, please read the following draft: http://tools.ietf.org/html/draft-
ietf-grow-bmp-07 (BMP RFC, IETF, 22 October 2012)

8 For more information, please visit the following website: http://bgpmon.netsec.colostate.edu/index.php/join-
the-peering/peering-faq (BGPmon Peering FAQ)

9 For more information please visit the following website: http://www.openbgpd.org/ (OpenBGPD)

http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://www.openbgpd.org/
http://www.openbgpd.org/

XORP
XORP, which is an abbreviation for eXtensible Open Router Platform, supports OSPF,
BGP, RIP, PIM, IGMP, OLSR. The project has been initiated to create an open source
extendible routing platform where researchers could perform tests on, but still make it a
solid and stable platform. It is created with security in mind, and if one of the routing
instances fail it will not drag the other ones down with it. XORP creates a RIB per client,
but it does not provide a built-in function to dump or save a RIB to a file. The IPC system
could be used in combination with the XRLs to retrieve the information from the multiple
RIB instances, which needs to be consolidated to one RIB instance. This RIB could then
be used to produce a RIB dump, which is one of the requirements that must be met.

Vyatta
Vyatta provides a software-based virtual router, virtual firewall and VPN Solution for the
Internet Protocol network. The network routing software engine was XORP and has been
replaced by Quagga on April 2008. In the year 2012, Brocade Communications Systems
acquired Vyatta and renamed it to “Vyatta, a Brocade Company”. In April 2013, Brocade
renamed the Vyatta Subscription Edition (VSE) to Brocade Vyatta 5400 vRouter. Their
latest commercial release of the Brocade vRouter is no longer open source based.

PyRT
Python Routing toolkit is made for the purpose of collecting route information. The project
was last updated on 5th of May 2002. It only supports one peering session according to
the documentation. This could be solved by running multiple instances of the program per
session. It saves all information to a MRT formatted file, but this file will only contain a
dump per BGP update that the program has received. In order to create a RIB table, a
separate application needs to maintain the state of the RIB table and cannot miss any
updates that are sent to the RRC. If this happens it will lead to an inconsistent or corrupted
state of the RIB table.

BMP (BGP Monitoring Protocol)
Another possible solution could be to use the BGP Monitoring Protocol (BMP) that is
supported by Cisco and Juniper. It is specifically designed to monitor the BGP updates and
states of peers. All messages stored in the Adj-RIB-In from the neighbour will be sent to
the monitoring station, which then sends the message to the server for further processing.
The BGP update messages received by the peer will be encapsulated in Route Monitoring
messages. It is still a draft and there are not that many servers or clients available who can
process this data. Another application still needs to be developed which creates the RIB
state from the information that is inside the Route Monitoring messages.

Ryu
Ryu is a component-based software defined networking framework that is actively
maintained by a community. It is a framework that can be used to receive BGP updates
and do further processing with this data. In order to support such a use case, an
application must be developed that is using the Ryu framework.

24

6.3. Other modules/implementations
This subchapter will describe some other modules or implementations that are necessary
to deliver a complete product. Some applications or possible alternatives require other
software that can do the further processing. The following applications are queueing
mechanisms that are needed, by some ‘possible alternatives’, to store the update
messages. For more information about the queueing mechanisms, the reader is advised to
read the research paper, which will provide the reader with more information.

Apache Kafka
Apache Kafka is a queueing system that originates from a LinkedIn project to build a more
scalable queueing system, which can handle more requests than other traditional systems
back then10 . They have used the system in production and made the code open source.
Apache Kafka took over the project and it is now an incubated11 project. When a consumer
wants to retrieve the message from the Kafka queue, the messages will not be deleted
from the queue after retrieval. This provides the ability to re-read packets and retrieve
updates even if they were consumed before.

RabbitMQ
RabbitMQ is an open source message broker software that uses the Advanced Message
Queueing Protocol (AMQP). It is written in Erlang and is built on the Open Telecom
Platform framework and is released under the Mozilla Public License. Rabbit Technologies
Ltd. develops and provides support for RabbitMQ. Rabbit Technologies was founded in
2007 and was back then a joint venture between LShift and CohesiveFT. It was acquired
in April 2010 by SpringSource, which is a division of VMware and it became part of
GoPivotal in May 2013.

HornetQ
HornetQ is an open source project for building a multi-protocol, embeddable, very high
performance, cluster, asynchronous messaging system from JBoss. The code base was
originally developed under the name JBoss Messaging 2.0. It started with Tim Fox who
was the project leader until October 2010. The current project leader is Clebert Sysconic
with its core engineers being Andy Taylor, Francisco Borges, Howard Gao, and Jeef
Mesnil. The project itself was released on the 24th of August 2009.

ØMQ/ZeroMQ
ØMQ, also known as ZeroMQ, is a high-performance asynchronous messaging library
which can be used in scalable or concurrent applications. The library provides a message
queue, but unlike message-oriented middleware, a ØMQ system does not need a
dedicated message broker. The library is designed to have a familiar socket-style API.

6.4. Research
If the reader wants to have more information about the research that has been done, it is
advised to read the research paper, which is included as an appendix. It outlines the
features that are supported by the programs or projects, but also the features that are
missing. The next chapter will describe the conclusion that has been made, which is based
on the information that was gathered during the research stage.

25

10 For more information, please look at the following presentation: http://www.slideshare.net/charmalloc/
apache-kafka (Medialets, Apache Kafka presentation)

11 Apache process that could lead to a Apache Top-Level-Project

http://www.slideshare.net/charmalloc/apache-kafka
http://www.slideshare.net/charmalloc/apache-kafka
http://www.slideshare.net/charmalloc/apache-kafka
http://www.slideshare.net/charmalloc/apache-kafka

7. Conclusion of research
This chapter draws a conclusion from the information that is outlined in earlier chapters.

7.1. Total score overview
Table 4 will show a total overview of the scores that are listed in the MoSCoW scheme per
‘possible alternative’.

Possible
alternative

Score ++ (+2) Score + (+1) Score - (-1) Score -- (-2) Total score

Custom
solution with
ExaBGP

6 6 1 1 15

BGPmon 6 2 3 3 5

OSR
Quagga

7 1 1 5 4

BIRD
Internet
Routing
Daemon

8 1 4 1 11

OpenBGPD 8 1 2 3 9

XORP 3 3 4 4 -3

Vyatta 7 1 2 4 5

PyRT 3 3 2 6 -5

BMP (BGP
Monitoring
Protocol)

3 3 2 6 -5

Ryu 1 5 6 2 -3
Table 4 - Total score overview of research report

The total score reflects how much work needs to be done in order to meet all the
requirements. Scores which are higher involve less work that needs to be done. This is
also the case when a ‘possible alternative’ supports multiple requirements.

The following points are given to get to a total score:
• ++ is worth 2 points
• + is worth 1 point
• - is worth -1 point (subtraction)
• -- is worth -2 points (subtraction)

The ‘possible alternative’ with the highest score is the custom solution that uses ExaBGP
as its core. This is a criterion which can be used to evaluate what the best solution is to
use as an alternative.

26

Another criterion is if it is possible, to develop and deploy a prototype that is based on this
‘possible alternative’. To measure, if this is indeed possible, the scores in the diagram
above are used. As the score also reflects how much work need to be done in order to
meet all the requirements, this is a good indication if the prototype could be developed and
deployed.

Be aware that the total score is not the only criteria that is used to draw a conclusion. It is
really important that the ‘must have’ requirements can be all met, otherwise the application
will miss some requirements that are the most important ones.

7.2. Conclusion
The conclusion of the above is to use the custom solution based on ExaBGP. It is a very
extensible, open source, and lightweight application. It does its job, which is to give
another program its output and that program should do the further processing.

Every possible alternative is compared with the requirements that are listed in the
MoSCoW scheme. This is to get a good overview if all the requirements can be met and if
much effort must be done to meet all the requirements. What also needs to be considered
as an important criterion is, if all the ‘MUST’ requirements can be met.

Not all the requirements are met when ExaBGP is used as a standalone application.
Another application needs to be developed to do the further processing and that meets
some of the “must” requirements. To meet all the “must” requirements it also involves
modifying the source code. But when you look at the overall picture, ExaBGP is more
flexible and extensible than the other applications and it is possible to meet all the ‘must’
requirements. It allows RIPE NCC to use this implementation even if the use cases will
differ in the next years to come. As a side note, the original developer of ExaBGP has
shown interest to add the requested features in ExaBGP.

The conclusion of the research stage is:
“The best alternative is ExaBGP, but some modification is required, as well as some other
applications that need to be developed. It is advised to develop a prototype to see if all
requirements can be met and if it is the alternative as we have outlined in this research
report.”

27

8. Proposed solution
This chapter describes the proposal that follows the conclusion, which has been outlined
in the previous chapter.

8.1. Custom solution using ExaBGP
As explained in the previous chapter, the best alternative is ExaBGP with a queueing
mechanism. Some additional components need to be developed that rely on a queueing
mechanism.

Multiple queueing solutions were evaluated during the research stage. The best queueing
mechanism that could be used in the new implementation is Apache Kafka. The most
important argument is that it provides the ability for a consumer to re-read packets from
the queue. This can be useful in cases were multiple consumers want to read packets
from a queue without destroying the data that is stored in this queueing mechanism. In our
case, this would be useful if an API is provided to the community. The community can then
create a tool that uses this API.

The following needs to be done to meet all the must requirements:
• State machine; a RIB state needs to be created, which is not done by ExaBGP, this

information is used to create a RIB dump;
• MRT formatted files; application that retrieves information from the queue and stores it in

a MRT formatted dump file;
• BGP metadata; provided by ExaBGP but must be stored somewhere, is also vital to

create a RIB-state (if a connection to a peer is lost, the RIB entries from that peer must
be flushed);

• Ordering; ExaBGP needs to add a sequential serial number in its output;
• Less delay; mechanism that inserts the data directly into the database;
• RAW data; must be added to the output or be able to receive this.

If all the “must” requirements must be met, it requires developing an application for putting
all the ExaBGP messages in a queue system, which can be later on retrieved for further
processing. Figure 3 will give the reader a total overview of the system that needs to be
developed.

28

Figure 3 - High level overview of proposed prototype

Another separate application retrieves information from the queue, creates a RIB state and
stores this in a MRT formatted file. The MRT formatted file contains all updates that were
received during the interval. As explained earlier, there is also a separate file, which
contains the RIB state which is formatted in a MRT format. This application could be
configured to do this periodically, and efficiency could be gained in the way the MRT
formatted file is created. This could reduce the latency, which is involved in the current
implementation.

29

The information that is stored in the queue must also contain the BGP state messages and
could be stored in a separate topic. Delay is involved when the MRT formatted files are
copied from the “state formatter” to Alpaca, and later on, copied to HDFS. To overcome
this delay, an application needs to be developed, which directly inserts the information into
the database.

8.2. Producer
The application, which receives the information from ExaBGP on the RRC itself, must
provide a mechanism to store all the information that it received from ExaBGP whenever it
cannot connect to Zookeeper/Kafa. This is illustrated in figure 4.

Figure 4 - High level overview of proposed producer application

30

The application will use multiple threads to process all information that it receives from
ExaBGP, which is illustrated in figure 5.

Figure 5 - High level overview of multithreading in proposed producer application

This keeps all the functions separated from each other. There are three threads that
provide the following functions:
• Receiver: Sending the received information, from ExaBGP, to a producer queue
• Producer: Put the information into the queue system or pass the information to another

thread if the queue cannot be reached. If the queue is reachable again it will put all the
locally stored information in the queue first before it puts the new information into the
queue

• Store: If the queue cannot be reached this thread will save all the information in another
queue or store the information locally on disk.

8.3. State formatter
Another application needs to be developed that retrieves the information, from the same
queue, and creates a RIB state. This is illustrated in the following image:

Figure 6 - High level overview of proposed state formatter application
31

The application will receive the information from the queue and stores it in a local queue.
After a configurable amount of time it will create two MRT formatted files. One which
contains all the updates that ExaBGP received and one that holds the complete RIB state.
These MRT formatted files are then copied to Alpaca that stores these MRT formatted files
on its NFS-share. This is done to maintain the MRT formatted files that are used by the
community, but also by other programs that do further processing on them and insert it into
the HBase database. It allows the currently existing mechanisms to continue working and
maintains backwards compatibility.

8.4. HBase consumer
To reduce the latency even more, it would be useful to insert the updates straight into
HBase, which is illustrated in figure 7.

Figure 7 - High level overview of proposed HBase consumer application

The information that is retrieved from the queue is directly inserted in HBase using Thrift
as its ‘gateway’. It will also create a RIB state so that it can periodically save a complete
RIB state in HBase, this is also done in the current implementation.

It is basically the same functionality, besides from inserting it into HBase, as the “state
machine”. The reason that this application does not rely on the data from the “state
formatter” is that it could be the case that the MRT formatted files might be deprecated in
future. If this is the case, the whole “state formatter” does not need to be any longer used
as it does not have any dependencies. There is also the case of locking that might be
involved if the HBase consumer relies on the data in the state machine. This involves
complexity and could cause race conditions in the HBase consumer if it is not
implemented correctly.

If there is an API that relies on the data from the state machine, it could rely on the data of
this application or use the state machine in another program.

32

8.5. Queueing system
The queueing system is a very important part of the overall working of the prototype too, it
is the central system where all information is logged and that lends itself to be used as an
inter-process communication (IPC) mechanism. For example, producers write their status
information to a specific topic. This information is used by the consumer to detect the
RRCs that are alive and the ones that publish the information. Then the consumer can
look at the ‘Consumer control queue’ to see if all the information that is published by a
specific RRC is also processed by another queue. When a new RRC comes online it can
register itself to the control queue of all RRCs, the consumers see this and a consumer
can subscribe to the topics, that the specific RRC has created, and process all the
information. When a new RRC is deployed, a consumer does not need to be configured to
subscribe to these topics, but automatically detects it and retrieves the information from
the topics.

The following image illustrates the queue mechanism.

Figure 8 - Proposed queue mechanism

The auto-detection and subscription mechanism is not implemented in the prototype, but
the queue system and prototype will be constructed to facilitate such a need for the future.

The queues of the RRC are divided in multiple partitions, this is for the sake of scalability.
If there is only one partition per RRC the system does not provide us with the scalability
that is needed in the RIS project. All these different partitions are stored in, for example the
RRC01 control queue, so that the consumers know how many partitions there are and the
sequence ID that is stored in a specific partition.

33

8.6. Developer planning
This chapter will describe the planning of the development stage.

The planning will be divided in several stages as outlined in the following table.
Stages Description Estimated

time

Stage 1
Preparation

Virtual Machines: Virtual machines need to
be created to use it as a development
environment. The applications will be
developed on these virtual machines but are
also tested.
Involves: Installing Virtual Machines,
Zookeeper/Kafka, HBase, ExaBGP,
libbgpdump.

1 week

Stage 2
ExaBGP and Kafka

Change ExaBGP code to meet all the “must”
requirements.
Put the messages in the queue system
Messages must be saved locally if the
connection is lost with Zookeeper/Kafka.
Add keepalive messages to the output/BGP
metadata.

2 weeks

Stage 3
State formatter

Create state machine.
Create code to create MRT formatted files.

3 weeks

Stage 4
Insert data into HBase

Insert data straight into HBase. 2 weeks

Table 5 - Developer planning

8.7. What is necessary
Multiple virtual machines are necessary to develop and test the code. In the beginning of
the development stage the virtual machines will run on a laptop, but it may be useful if
some parts of the project are installed on a real server. When a real server is used and the
application is tested, some requirements could be set on the required specifications of a
server that must run a RRC.

It must also be possible to connect a test RRC with a test peer. This could be done to
determine the scalability of the application. If the HBase consumer is ready for use, it will
be tested to see if the HBase consumer can insert data in a test setup.

34

9. Development
During the development stage, several changes were introduced. This resulted in a
prototype that differs slightly from the proposal, which is described in the previous chapter.
The changes, which were introduced, were the result of several discussions about how the
prototype could be developed in an efficient way and one which could be reused.

During a discussion with some team members12, the choice was made to switch from
Kafka to RabbitMQ. RIPE NCC is more familiar with the use of RabbitMQ as a queueing
system, which was one of the reasons to use another queueing system. The other reasons
had to do with the capabilities that Kafka supports but that were not used and the Python
library for Kafka. The Python library for Kafka was not really mature and contained some
bugs that are listed as issues on Github. The re-read capability of Kafka was not used in
the prototype, whereas RabbitMQ has better libraries and could provide security
mechanisms that could be used for securing the data transmission. If it is later on decided
that another queue mechanism will be necessary, it is still possible to do so.

The inner working of the state formatter has also been changed. The first proposal stated
that the state formatter will insert both the RIB and the update messages in HBase. As the
RIB is already inserted into HBase, by the legacy systems which relies on the MRT
formatted files, it is not really necessary to reimplement such a task in the prototype. It is
decided that the HBase consumer will only receive the update messages from the
queueing system and insert it into HBase. The contents of the MRT formatted files will be
used to insert the RIB contents into HBase, using the existing mechanisms. This is also
explained in the following image.

Figure 9 - High level overview of data flow in prototype

35
12 During the meeting at 18th of March 2014

Because the prototype changed a bit, the planning also had to be changed according to
these changes. The planning has been changed to the following.

Stages Description Estimated
time

Stage 1
Preparation

Virtual Machines: Virtual Machines need to be created to
use it as a development environment. The applications will
be developed on these Virtual Machines but are also tested
on these Virtual Machines.
Involves: Installing Virtual Machines, RabbitMQ HBase,
ExaBGP, libbgpdump.

1 week

Stage 2
ExaBGP
and
RabbitMQ

Change ExaBGP code to meet all the “must” requirements.
Put the messages into the queue system.
Messages must be saved locally if the connection is lost
with RabbitMQ.
Add keepalive messages to the output/BGP metadata.

2 weeks

Stage 3
Insert data
into HBase

Insert data straight into HBase. 2 weeks

Stage 4
State
formatter

Create state machine.
Create code to create MRT formatted files.

3 weeks

Table 6 - Changed developer planning

9.1. Process
During the development stage, weekly meetings were organised to discuss the progress. It
was also used to talk about how a specific application should be developed. A lot of
feedback was processed and also implemented in the resulting prototype.

During the development stage a tracker system was used for creating several tasks per
stage. Creating these tasks allowed for a better overview of the whole project and were
smaller units of works must be finished before the other one could be started. During the
weekly meetings the process that has been made was discussed and a new sprint was
created, which was one week of time, in which some of the small units of work must be
finished. It allowed for the supervisors to have a better overview of the state of the project.
After the works was reviewed the ‘unit of work’ was accepted by the team manager.

9.2. Preparation
Several virtual machines were created and used as a development environment. This
environment was used to emulate the new RIS implementation. It consisted of three virtual
machines, which were used to serve the RabbitMQ services. RabbitMQ was installed in an
active/activate cluster setup with the queues replicated across all servers. This setup was
used to simulate a cluster setup that could be used in a real production environment. If
one server is down, for maintenance or if it crashed, one of the other servers will be
elected as a leader and could handle the requests. Such setups are used in production
environments and were also used for testing the producer to be broker/cluster aware.

36

Two other servers were used as software routers running Quagga with different
configurations. One of these announced thousands of routes where the other only
announced several routes. Another server was used to run ExaBGP with the producer
software and acted as an RRC.

There was one other server that was used to run HBase and the Thrift gateway. Thrift is
used as a gateway and allows us to use a Python library to connect with the Thrift gateway
and insert data into HBase.

All these virtual machines were created using VirtualBox and Vagrant for easy deployment.
Vagrant can be seen as a wrapper around other virtualisation software such as VirtualBox
and VMware.

9.3. ExaBGP and RabbitMQ
During the second stage of the development of the prototype, the ‘producer’ needed to be
created. The ‘producer’ is a program that receives messages from ExaBGP and pushes it
to the queue. Since it is important that the producer does not lose messages, otherwise it
would lead to an inconsistent state, the producer has to facilitate a save mechanism. This
save mechanism needs to save the messages when the connection is lost with RabbitMQ.
It was also necessary to modify the source code of ExaBGP since some requirements
could not be fulfilled with the current implementation of ExaBGP. The modifications in the
source code in ExaBGP and the extra functions that have been implemented are
described in the following paragraphs.

9.3.1. ExaBGP modifications
The source code of ExaBGP has been changed to implement new features, or to add
more information in the ExaBGP messages, to meet some of the requirements. The
following functions or output elements were added to ExaBGP:

• Added high resolution timestamp (done by the ExaBGP developer in a later
commit);

• Raw message is also added in the update messages;
• Sequence keys have been added;

• Variable $counter_messages introduced to hold the sequence keys;
• Keepalive messages can now be passed to the backend;
• Neighbour capability negotiation messages are parsed and can be passed to the

backend;
• Added id variable. Variable that is used to hold the hostname ($hostname), parent

process identifier ($ppid), and the IP address of the neighbor ($nip).
Concatenated using the following format: $hostname_$ppid_$nip. Useful for later
process to determine what the original RRC and its PID was during the time that
the BGP message was received.

• “Type” added in the output. Specifies what kind of message it is. The following
types have been added ('update','open','keepalive','state', 'raw',
'notification',‘none’).

• Introduced notify element in JSON output. ExaBGP is raising an error when the
notify option is not empty. If it raises an exception, the contents of the $notify
variable will be passed to the backend. The code and subcode of $notify is added
in the JSON notification message.

37

The changes that were made in the source code of ExaBGP have been pushed to the
upstream branch13 . Since the pull request was accepted by the developer of ExaBGP, all
changes or added functions are now in the main releases of ExaBGP. When a new version
of ExaBGP is released it is not longer necessary to apply all the changes to the new
version, since the modifications and new features are now part of the mainstream code.

9.3.2. Producer general information
When the source code is downloaded from the repository the following files will be in the
producer directory14:

• producer (package):
• __init__.py
• queue_connector.py
• store_local.py

• producer_program.py
• settings

The hierarchy and structure of these files and directory come from the different processes
that exist in the producer program. The producer_program.py file is the parent process of
all the other subsequent processes that are launched by the ‘producer’ application. The
producer_program is executed by ExaBGP during the startup of ExaBGP. The producer
package contains the other three files, which are used by the producer_program. The
__init__.py is created so that Python treats the directory as a Python package. The other
two files acts as submodules that contains code for the other two processes. The
queue_connector contains the source code for pushing messages to the queue and the
store_local file contains the code for storing the messages locally when the connection
with a queue is lost. The settings file contains configuration parameters which are loaded
in the program during the startup of the producer program.

9.3.3. Producer processes
The final version of the prototype of the producer program differs slightly from the original
proposal. Instead of threads, multiple processes are used to do all the work of the
producer. The main reason to switch from a multi-threaded application structure to a multi-
process application structure, is because of GIL15 in Python. Since only one thread of a
process can run at the time, no real processing benefit is involved using the multi-threaded
model. When multiple processes are used, by using the multiprocessing library, multiple
processes can run at the same time, with an interface which is similar to the one of
threading.thread. It also involves a performance benefit when a server has multiple
processors. The multi-process architecture is shown in figure 10.

38

13 https://github.com/thomas-mangin/exabgp/pull/2https://github.com/thomas-mangin/exabgp/pulls/
wmiltenburg?direction=desc&page=1&sort=created&state=closed (Github pull request)

14 Items listed in a tree structure

15 For more information about GIL, please visit the following website: https://wiki.python.org/moin/
GlobalInterpreterLock (Python GIL)

https://github.com/thomas-mangin/exabgp/pull/2
https://github.com/thomas-mangin/exabgp/pull/2
https://github.com/thomas-mangin/exabgp/pull/2
https://github.com/thomas-mangin/exabgp/pull/2
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock

Figure 10 - Processes that exist in the producer prototype

There are three processes; exabgp_receive, queue_manager and the save_local process.
The exabgp_receive process is the main process that forks all the other processes. It also
creates the pipes and when all of this is done, it will only receive the messages from
ExaBGP and send it to the queue_manager process. This function will also look at the
contents of the message to see if there is a notification element with the value “shutdown.”
If this is the case, the message will be passed to the other processes and the main
process will also send a message containing a “received_shutdown” message. This
message is unique in the producer application and causes the other processes to exit if
they have finished their work.

9.3.4. Producer IPC
IPC, or message passing, is done using the multiprocessing Pipe class from the
multiprocessing module, which returns a connection type tuple. It is possible to exchange
messages using these connectors and it will raise an error when one end of the pipe is
receiving and sending both at the same time. Messages bigger than 32MB may raise a
ValueError depending on the OS that is used16. The pipe connections that exist between
the processes in the application are shown in figure 11.

Figure 11 - IPCs that exist in the producer prototype

39

16 For more information, please visit the following website: https://docs.python.org/dev/library/
multiprocessing.html#multiprocessing.Connection (Python)

https://docs.python.org/dev/library/multiprocessing.html#multiprocessing.Connection
https://docs.python.org/dev/library/multiprocessing.html#multiprocessing.Connection
https://docs.python.org/dev/library/multiprocessing.html#multiprocessing.Connection
https://docs.python.org/dev/library/multiprocessing.html#multiprocessing.Connection

Connection types
exabgp_receive > queue_manager (messages are only sent from exabgp_receive to
queue_manager).
save_local <> queue_manager (local_save_conn, messages are send both from and to
queue_manager and save_local).
queue_manager > save_local (data_conn, messages are only send from queue_manager
to save_local).

Since the save_local and queue_manager both sends messages, it was decided to use
the connection pipes, since it allows a two way connection.

Description of connection pipes
process_conn: consists of process_parent_conn and process_child_conn. The
exabgp_receive process receives all messages from ExaBGP and sends these messages
using the process_parent_conn connection. The process_child_conn is used by the
queue_manager process, which only reads from the pipe connection and does further
processing on these messages.

local_save_conn: consists of local_save_parent_conn and local_save_child_conn. The
queue_manager process sends the messages that need to be saved locally using the
local_save_parent_conn. It also uses this connection to receive the messages that are
stored locally if there is a connection with the RabbitMQ queues after a connection has
closed. The local_save_child_conn is used by the save_local process to read the
messages that need to be saved locally. When the connection is up again, it will send all
the locally saved messages, using the pipe connection, to the other process. This other
process will try to pull the messages from the queues.

data_conn: consists of data_conn_queue_manager and data_conn_save_local. The
queue_manager uses the data_conn_queue_manager pipe connection to signal to the
other process that the connection is up again and is willing to receive a message. The
save_local process will use the data_conn_save_local pipe connection to see if the
queue_manager is willing to accept messages. If it receives an ‘up’ message, it will send
its locally saved messages to the queue_manager process. The queue_manager process
will on its turn send the received messages to the queue. If this fails, it will not
acknowledge the message, using the data_conn pipe connection. This causes to save the
message locally and does not remove if from the local storage. If the message is
acknowledged by the queue_manager, using the data_conn pipe connection, the message
will be removed from the storage.

During the time that the locally saved messages are send to the queue, the producer will
still process incoming messages. It will add the messages to the end of the local queue.

40

9.3.5. Producer messages
The message passing mechanism described in the previous paragraph is also illustrated in
figure 12.

Figure 12 - Overview of messages that are exchanged between processes

9.3.6. Tests performed
The following tests have been performed to see if the producer works as it should:

• Verified that messages are saved locally and send to the RabbitMQ brokers when
the connections fails multiple times during one session;

• Verified the message arrival at the RabbitMQ brokers with the announcements of
2540 and 620 different routes;

• Queue order verification, the order of messages in the update queue was verified
to be reliable;

• Verified that the raw message in the JSON string is the same as the raw BGP
message by comparing the raw data with the one captured by a packet capture;

• Verified that messages that are saved locally and later on inserted in the queue,
when a connection is torn down, and when previous locally saved messages were
sent to the RabbitMQ queues;

• Verified of that different types of messages are added to the queue;
• Shutdown verification when a messages receives an invalid JSON message that

the producer will shut itself down. It has been verified that the application
terminates when it receives an invalid message.

9.3.7. Unit tests
Unit tests are created for testing the producer application. There are currently two tests,
one for testing the RabbitMQ connections and one for testing if messages are locally
saved. When one or both of the tests are started, it will create a ‘ConnectionMessages’
object that starts the other processes and creates the connection pipes.

The two tests will use the connection pipes to send messages to the other process. With
the ‘RabbitConnection’ test, a message will be send to the RabbitMQ queue and later on
retrieved and compared. With the ‘SaveMessage’ test, a message will be saved locally
and later on retrieved and compared with the original message.

41

9.4. HBase consumer
The third stage of the prototype was to build a prototype application that receives
messages from the RabbitMQ queues and inserts it into HBase. HBase is already being
used by RIPE NCC and the current RIS implementation. This application would connect to
one of the update queues and consume messages from that queue. This subchapter will
describe the HBase consumer, its internal workings, and what the final prototype can do.

9.4.1. General information HBase consumer
This program makes use of the HappyBase, pika and msgpack modules for connecting
with the Thrift gateway and the RabbitMQ brokers. The Thrift gateway is used for inserting,
receiving and manipulating data that reside in HBase. HappyBase on itself makes use of
the Thrift Python library, which is used to connect with the Thrift gateway. The msgpack
module is used for encoding the message, which is received from a queue, in such a way
that multiple applications17 can decode the data, by using msgpack, for further processing.
This is already done with other data that needs to be saved in HBase, by the RIPE NCC,
and it is convenient to follow this approach.

The application can only connect to one queue at a time. This is a design decision18 to
benefit from the multi-core architecture which is available on modern servers. It is possible
to run multiple instances of the application at the same time, with a different configuration
file, which results in multiple processes that run at the same time. These multiple
processes can concurrently pull data from the RabbitMQ queues, which result in a
performance benefit. If the decision was made to connect to multiple queues, and only use
one process, it could lead to a bottleneck. Since one of the requirements of the project is
to research a scalable application, it makes more sense to support multiple processes
connecting to multiple queues. This design decision supports this, which is the reason why
this is also implemented in the prototype.

The HBase consumer is created to insert all the messages in HBase. These messages
can later on be used by the state formatter when it crashes. Imagine a situation where the
state formatter crashes and its last dump is several minutes old. During these minutes it
consumed the messages and acknowledged them, which results in a deletion of the data.
The state formatter can now rely on the data stored in HBase to come to a consistent state
and create the MRT formatted files. The MRT formatted files could then be used by the
legacy system to populate the RIS tables. A separate table is used for storing the ExaBGP
messages so that it can not interfere with the schema in current tables. The data that is
stored in HBase can also be used by other applications, which use HBase to query for
data.

9.4.2. Connection with RabbitMQ
The HBase consumer connects with the RabbitMQ brokers using the pika library. Due to
the concept of RabbitMQ, a message is deleted from the queue when a consumer
acknowledges the message. This is one of the reasons why there is an exchange ‘fanout’,
which creates two queues with the same messages. Such a design creates the ability to
read the messages from one queue, acknowledge it, and that another application can still
receive the message from a broker using the other ‘duplicate’ queue.

42

17 These applications can be written in another programming language if msgpack is compatible with the
certain programming language.

18 This decision was made during a weekly development meeting on 8th of April 2014

When a message is received by the application, the application will only send an
acknowledgement when all the processing is completed. This creates use cases where an
exception is raised, which is handled by the application, and the message is not
acknowledged. Either, the connection with RabbitMQ is closed or the application sends a
‘nack’19 to RabbitMQ. Both solutions will cause the message not to be removed from the
queue, so that the program can try to receive the same message again, from the queue,
and insert it into HBase.

9.4.3. Connection with HBase
The HBase consumer connects with HBase using the HappyBase module, which on its
turn relies on the Thrift library and the Thrift gateway. The Thrift gateway, as its name
might reveal, is a gateway between an application and HBase using the Thrift library. This
allows an application not to be written in Java, which is the native library programming
language. Happybase is a library that simplifies the interaction with HBase and the Thrift
gateway and is therefore used to simplify the code that is used to interact with Thrift.

The application encodes the message contents using the msgpack module, which results
in an encoded message, and which could be decoded by other applications using different
programming languages. During a meeting with developers of RIPE NCC, it was decided
to use the following table structure during the prototype phase of this application:
Row Qualifier:

Neighbour IP
Qualifier:
Neighbour IP

... Qualifier:
Neighbour IP

RRC hostname
+ timestamp +
counter

ExaBGP message ExaBGP message ... ExaBGP message

RRC hostname
+ timestamp +
counter

ExaBGP message ExaBGP message ... ExaBGP message

RRC hostname
+ timestamp +
counter

ExaBGP message ExaBGP message ... ExaBGP message

Table 7 - Table structure in HBase, the amount of columns is for illustration

The counter in the row key is hundred characters long, which creates the ability to use the
row key for sorting. When a ‘scan’ is used to receive the contents of the HBase table, it will
return the messages in ascending order. Since the row keys are ordered in a
lexicographical order20, the counter property in JSON is prepended with zeroes so that it
consists of one hundred characters. This is with the default settings, but it could be
configured to an arbitrary amount of characters. This results in receiving the messages in
ascending order if the row keys are as long as all the other row keys. In the prototype it is
used to receive the messages in order and not add the complexity in the other applications
that rely on ordered data that is stored in HBase. For example, the ordering complexity
does not need to be added in the state formatter since it already receives the messages in
order, as long as the row keys are as long as the other row keys.

43

19 When a ‘nack’ is sent to RabbitMQ, a not acknowledged message, it will keep the message in the queue.

20 For more information, please visit the following website: http://wiki.apache.org/hadoop/Hbase/
DataModel#row (HBase, Apache).

http://wiki.apache.org/hadoop/Hbase/DataModel#row
http://wiki.apache.org/hadoop/Hbase/DataModel#row
http://wiki.apache.org/hadoop/Hbase/DataModel#row
http://wiki.apache.org/hadoop/Hbase/DataModel#row

When the methods are invoked, for inserting data in HBase, and when processing
completes, the method will return the control to the method which originally invoked the
method. If no exception was raised during the insertion in HBase, an acknowledgement
will be sent to RabbitMQ. If there was an exception, the code will catch this exception and
the application will later on try to reconnect with HBase and a ‘not acknowledged’ message
will be sent to RabbitMQ.

9.4.4. HBase consumer structure
All the methods in the HBase consumer heavily rely on each other and especially when it
comes up on handling exceptions that may be raised. The ‘receive’ method runs inside a
loop and invokes the ‘timeout’ method when an empty message is received. This is a
back-off timer for not constantly polling the server for messages and does not result in a
busy-waiting model. When the control is returned back to the ‘receive’ method it will re-try
to receive messages from the queue. If a message is received, it will invoke the
‘confirm_receive’ method, which checks if an empty message is received, if so the
‘lock_time’ and ‘connect_timeout_check’ variable are set. When the message is not empty,
it will invoke the ‘hbase_processing’ module for inserting the message in HBase using
HappyBase and msgpack. The ‘hbase_processing’ method also invokes the
‘row_key_counter’ for prepending the ‘counter’ property with zeroes, as outlined earlier.
When ‘row_key_counter’ finished prepending the zeroes it will return the resulting row key
back to the ‘hbase_processing’ method, which will on its turn try to insert the message in
HBase using the Thrift gateway. When the message is successfully inserted in HBase it
will return control back to the ‘confirm_receive’ method, which will send an
acknowledgement message back to RabbitMQ and return control back to the ‘receive’
method.

The preceding explanation on the relationships between the methods are outlined figure
13.

Figure 13 - Relationships between methods in the HBase consumer
44

If an exception occurred during processing, the exception may be caught one-step up in
the hierarchy. For example, it is perfectly possible that the ‘hbase_processing’ method
raises an ‘ErrorSendingData’ or ‘TTransportException’ that is caught by the
‘confirm_receive’ method, which will send a ‘not acknowledged’ message back to
RabbitMQ and closes the connection with HBase.

The following image shows which methods have remote connections.

Figure 14 - High level overview of remote connections that exist in the HBase consumer

9.4.5. Unit tests
Unit tests are created for testing the HBase consumer application. Per test, it will create an
hbase_consumer instance and will use the methods in the ‘HBaseConsumer’ class to
receive data from and insert data in HBase. When messages are received or inserted, all
results will be compared with each other. If the resulting output is the same as what is
expected to be, the test will succeed.

The most important methods are tested, such as the ‘confirm_receive’ and
‘hbase_processing’ methods. The ‘timeout’ and the RabbitMQ connection are also tested.
From processing the data till testing the data transmission between remote connections, it
will be tested if this is done correctly.

9.4.6. Other tests
Other tests that have been performed were from some use cases’ point of view. For
example, what happens when the connection with the Thrift gateway or the RabbitMQ
queues are lost? Such use cases should be tested and were tested after the unit tests
were developed.

45

A test was performed to see what happens when the connection with the Thrift gateway
was lost. The HBase connection would simply be closed, more precisely the instance
variables were cleared, and a ‘not acknowledge’ message was sent to the RabbitMQ
brokers. This resulted in the message to be saved in the queue, so that it could be
retrieved at a later moment. The application would periodically try to reconnect with the
Thrift gateway, and if it succeeded it would pull the messages from the RabbitMQ queue
and insert it into HBase. If it could not reconnect with the Thrift gateway it would set a
back-off timer to try to reconnect at a later moment.

Another test was performed to see what happens when the connection was lost with one
of the RabbitMQ brokers. The application will try to reconnect with another broker and if it
succeeded it would pull the messages from that queue and insert it into the HBase table. If
the application could not reconnect with one of the RabbitMQ brokers it would set a back-
off timer. The application will then periodically try to reconnect with one of the brokers.

9.5. State machine
The fourth stage of the prototype was to build a prototype application that receives
messages from multiple RabbitMQ queues and save this information in a MRT formatted
file. This subchapter will describe the state machine consumer, its internal workings and
what the final prototype can do.

9.5.1. General information state machine
The state machine is an application for storing the messages and a RIB state in an unified
and standardised format. This format is saved locally on disk and allows other programs to
read or copy this information to another application for further processing. The format used
by the application, for storing this information in a unified and standardised format, is the
MRT format, as specified in RFC 639621. The reason for choosing this format has to do
with the legacy systems, which uses the MRT formatted files as input for processing, but
also because these files are used by the community. It is also a requirement to maintain
the old formatted MRT files and that a new application can also create such files, since it is
not possible to switch to a whole new format without maintaining the old format.

This application also creates two different files, based on the interval, for storing a RIB
state and all BGP messages that ExaBGP received during this time interval. To accomplish
this, the state machine connects to all the update queues of one RRC, and stores this
messages locally in a SQLite database. Since SQlite is supported with a default Python
installation, it was chosen to use SQLite as the local database. The SQLite database is
used in this prototype and later versions of the prototype are recommended to use HBase.
When a certain timestamp has been received, the application starts processing only one of
the two files. If both files needs to be created, it is necessary to start the application twice
with different settings in the configuration file. This distinction between ‘modes’ has to do
with processing efficiency, one process only does one job and focusses on it. It has also to
do with being able to temporarily stop consuming from a queue. For example, if one
process both creates the RIB and update files, it could block one of these two when
consuming from the queues is stopped. It must temporarily stop consuming from a queue,
otherwise it would lead to an inconsistent state, but since it is blocking each other it is
inefficient. It is therefore simpler and more efficient to have this distinction between these
modes.

46

21 Multi-Threaded Routing Toolkit (MRT) Routing Information Export Format: https://tools.ietf.org/html/rfc6396
(IETF, October 2011)

https://tools.ietf.org/html/rfc6396
https://tools.ietf.org/html/rfc6396

9.5.2. Update mode
When the application runs in 'update' mode, it will pull all the messages from the
RabbitMQ queues and tries to add these messages in its local database. When the
application detects that a message reached a certain timestamp, it will be discarded and
not acknowledged. Next, the application will remove the queue from the list of queues that
the application knows, which results in a situation where the application temporarily does
not pull messages from the queue. When all queues are removed from the queue, the
application will try to generate a MRT formatted file.

Since the discarded messages are not acknowledged, the application will receive these
messages when it tries to pull a message from the queue.

9.5.3. RIB mode
When the application runs in 'rib' mode, it will pull all the messages till a certain timestamp
from the RabbitMQ queues, and tries to create a RIB state. The RIB state will be saved in
a local database and some messages, which resides in the update queue, can have an
effect on the RIB state. When the application detects that a message reached a certain
timestamp, it will be discarded and not acknowledged. Next, the application will remove
the queue from the list of queues that the application knows, which results in a situation
where the application temporarily does not read the contents of a queue. When all queues
are removed from the queue, the application will try to generate a MRT formatted file.

Since the discarded messages are not acknowledged, the application will receive these
messages when it tries to pull a messages from the queue.

The keepalive, open and state messages could have an effect on the RIB state, which is
also outlined in subchapter ‘9.5.5 State machine structure’.

47

9.5.4. MRT library
During this fourth development stage, it was necessary to create a MRT library for being
able to create the MRT formatted update and dump files. Since there were no suitable
MRT libraries that could be used, DPKT22 is one of the few MRT serialisers and was not
really working as it should, it was necessary to create such a library. The library can
currently create the following MRT objects:

• TABLE_DUMP_V2
• PEER_INDEX_TABLE
• RIB_IPV4_UNICAST
• RIB_IPV4_MULTICAST
• RIB_IPV6_UNICAST
• RIB_IPV6_MULTICAST

• BGP4MP
• BGP4MP_STATE_CHANGE
• BGP4MP_MESSAGE
• BGP4MP_MESSAGE_AS4
• BGP4MP_STATE_CHANGE_AS4

Other types or subtypes specified in the MRT RFC23 are currently not supported by the
library, since it also not used in the state machine. Since the modular structure of the
library it is perfectly possible for one to create support for one of the other types or
subtypes.

9.5.5. State machine structure
When the state machine is started, by executing the ‘state_formatter.py’ file, it first creates
a ‘State’ object from the ‘state_rib’ or ‘state_update’ file, depending on the mode it is
running in. If all the initialisation and declaration of the instance variables are done and
set, it will call the ‘recv_messages’ method which runs in a while loop. This loop will
constantly call the ‘receive_message’ method of the ‘Connector’ object, which is inside the
‘connector.py’ of the ‘rabbit_connector’ directory, for receiving messages from the queue. If
it receives an empty message or ‘None’ object, it will temporarily not consume messages
from that queue. When all queues are temporarily blocked the whole application will sleep
for a configurable amount of time, so that all queues can be read from again. This is more
efficient than constantly calling sleep since one empty message does not block the whole
application, but only results in a situation where the application temporarily does not read
from that queue.

If a valid JSON message has been received by the application, it tries to determine its
type. This must be either one of the following types: “open, keepalive, update, state or
notification”. When the type is determined, of the message that the application just had
received, the method will be called that can do the processing for that message type.
Every method that is invoked to do the processing on behalf of the application, tries to
determine if the message is also in the allowed time interval.

48

22 DPKT: https://code.google.com/p/dpkt/ (DPKT, Google Code)

23 RFC 6396: https://tools.ietf.org/html/rfc6396 (October 2011, IETF)

https://code.google.com/p/dpkt/
https://code.google.com/p/dpkt/
https://tools.ietf.org/html/rfc6396
https://tools.ietf.org/html/rfc6396

When it is determined that the timestamp of the message is equal or higher than the
allowed maximum timestamp, the message is discarded and not acknowledged. The
‘set_lock’ function of the ‘Connector’ object is also invoked, this invocation of this function
will result in a deletion of the queue in the list of known queues. The queue will not be read
till the ‘Connector’ object decides to call the ‘queue_list’ method24, to determine all
available queues. If there are not any queues left to consume from, the ‘Connector’ object
will invoke the ‘file_close_and_reset_locks’ method of the ‘State’ object, the ‘State’ and
‘Connector’ object can invoke each other methods for signalling events to one another.
When the ‘file_close_and_reset_locks’ method is invoked, the processing will begin. This
will result in either an update file, which contains all the BGP messages that the
application has received during a certain time interval, or a RIB dump file. When the
processing of the file has been completed, the ‘rib_move_file’ method or
‘file_close_and_reset_locks’ will move the file to the ‘complete’ directory, where other
applications can copy or read the contents of the file without raising a conflict since no
write actions take place.

The rest of this subchapter will describe the effects that a certain message type could have
on the resulting update file or the state of the RIB. If the reader wants to get a better
understanding of all the functions and methods that exist, the reader could look at the next
subchapter ‘9.5.7 Flowchart functions’ to get a better insight of the functions and methods
that exist.

State messages result in an alteration of the RIB state when it is in ‘rib’ mode. If a peer
goes down, all attributes of the previously announced routes are removed, but the
timestamp of this removal is saved. It also results in the modification of the peer
information in the database, which can be used by another application to determine if a
peer is up or down. When a peer goes up it effects the state information in the database,
which can also be used by another application, but also the state of the previously
received prefixes that it had received. It will remove all prefixes for that certain neighbour.

When the application is in ‘update’ mode it will write out the BGP4MP_STATE_CHANGE
or BGP4MP_STATE_CHANGE_AS4 message, depending if the peer supports 4 byte AS
numbers. The application knows if the peer supports 4 byte AS numbers by looking at the
negotiated capabilities in the open message. If it is not known whether it is supported, due
to a state message that came before an open message, the application assumes that the
peer supports 4 bytes AS numbers as a default.

Keepalive messages result in no alteration of the RIB state when it is in ‘rib’ mode. The
timestamp of the last keepalive message is saved for a future version of the state
machine. It could be used for determining if the keepalive messages are in time. If it is not
in time an alert can be created for signalling that an expected keepalive messages has not
been received in time. Currently the keepalive mesage is only used for determining if the
timestamp is higher or equal than the maximum allowed timestamp. This is done to
determine if the queue must be removed from the queue list and can also have the effect
that the RIB file must be written to disk.

When the application is in ‘update’ mode it will write out the BGP4MP_MESSAGE or
BGP4MP_MESSAGE_AS4 message, depending on the negotiated capabilities of the
peer.

49
24 This is also done during the initialisation and declaration of the ‘State’ object

Open messages result in no alternation of the RIB state when it is in ‘rib’ mode. It is only
used to see if the peer supports the 4 byte AS number capability and is used when the RIB
state is written to disk in the MRT format.

When the application is in ‘update’ mode, it will write out the BGP4MP_MESSAGE or
BGP4MP_MESSAGE_AS4, depending on the negotiated capabilities.

Update messages result in an alteration of the RIB state when it is in ‘rib’ mode. The
timestamp, body and neighbour IP is saved in the database. It is also used for determining
the BGP ID of the neighbour, since this is only stored in an JSON update message from
ExaBGP. All this information is saved in the database and is retrieved when the
‘start_processing’ method is invoked. When the ‘start_processing’ method is invoked, it will
use the ‘rib_retrieve_attributes’ to receive all BGP attributes of the body message in binary
representation according to the BGP RFC.

When the application is in ‘update’ mode, it will write out the BGP4MP_MESSAGE or
BGP4MP_MESSAGE_AS4 message, depending on the negotiated capabilities with the
peer.

Notification: Are acknowledged and all information in the database is deleted if it is a
notification that tells the consumers that the RRC is offline.

50

9.5.6. Flowchart functions
The preceding subchapter describes the functions and methods that exist in the
application. To give the reader a better insight of all these functions and methods, figure 15
gives the reader an overview of all these functions and methods that exist in the
application.

Figure 15 - Flowchart of functions that get invoked in the state machine

51

9.5.7. Unit tests
There are three unit tests that test the internal working of the state formatter and its
connections that it has to maintain. There is a ‘GeneralTestInfo’ class, which is used for
creating object of state_update and state_rib, which allows the unit test to have direct
access to the database and the RabbitMQ queues. The following unit tests currently exist:

• DatabaseTest
• RabbitMQTest
• HandlerTest

DatabaseTest: tests if it can insert and retrieve data from the database. If the same data
is retrieved, as it was originally inserted, it will pass the test. If the retrieved data differs,
the test will fail.

RabbitMQTest: tests if there is a connection with one of the RabbitMQ queues, but also
checks if there is data to be retrieved. If a connection could not be set-up with one of the
queues, the test will fail.

HandlerTest: a JSON message will be passed to the ‘state_formatter_update’ and
‘state_formatter_rib’ methods and will be later retrieved from the database. Since the
‘state_formatter’ methods were invoked to process the data, it will do all the processing
automatically. The expected result was compared with the data that was retrieved from the
database. If the received data is the same as what is expected, the test will pass. This test
ensures that the application follows the BGP RFC and that a consistent state could be
created, or that a correct update file could be created.

9.5.8. Other tests
Other tests have also been performed to see if the application works as it should. Content
that has been saved in the database, like the body message, were compared with the
original body messages that resides in the ExaBGP messages. It was concluded that
these messages were the same, but also that the MRT formatted messages, saved in the
database, was the same as was expected. Some of these manually performed tests were
later also added in the unit tests.

The files that have been created using the state machine, were also tested with several
parsers. The parsers libbgpdump and mrtparse25 were used to see if the resulting files
could be parsed. With the final prototype, both parsers could parse the files that were
created by the state machine.

52
25 mrtparse: https://github.com/YoshiyukiYamauchi/mrtparse (mrtparse, Github, YoshiyukiYamauchi)

https://github.com/YoshiyukiYamauchi/mrtparse
https://github.com/YoshiyukiYamauchi/mrtparse

10. Deployment and testing
The deployment and test stage were meant for testing the prototype and deliver a product
that could be released to third parties. In a meeting with the staff of the RIPE NCC, it was
decided that the first week would be spend on pushing all code changes of ExaBGP
upstream. The arguments for pushing these code changes upstream are mainly for
maintainability and compatibility. Now that all the code changes are in the main stream
branch of ExaBGP, no further maintenance has to be done on our code changes, since it
is now being maintained by the original developer of ExaBGP.

Due to the new versions of ExaBGP, and since some JSON elements were renamed,
some code changes needed to be done on the HBase consumer and state machine
application. This was all done in that one week of time and the rest of the time could be
used for testing the prototype.

Since the time was limited, it was decided that the testing should be more functional,
instead of benchmarking. The focus of the tests are on the ‘integrity of data’ requirement,
since this requirement is one of the most important ‘should’ requirements. The other ‘must’
requirements are either met or needs further testing, which could be a project on its own. It
is also better to first test the integrity of the prototype, since the prototype its “core” is
building a state. It would be more beneficial to first make the “core” solid and then perform
some tweaks to improve the processing speed. In chapter ’12. Recommendations’ it is
outlined which tests should be performed for testing the scalability and the ‘less delay’
requirement. These recommendations could be used for another project, which is more
focussed on testing the prototype’s processing and throughput. If the reader wants to know
if the ‘must’ requirements are met, it is advised to read sub-chapter ‘10.6 Conclusion’.

10.1. Integrity test
Two Quagga servers, later referred to as announcement servers, will have a peering
relationship with two RRCs, later referred to as test RRCs. One of the test RRCs will run
Quagga with the same configuration of the current RRCs that are in use, the other test
RRC will run ExaBGP with all of it necessary components (i.e., queue systems, consumers
etc.). The two announcement servers are artificial routers and will have a static
configuration file, which results in the route announcements. Since the configuration file is
static, and it is assured that the same routes will be announced to both the test RRCs, the
generated MRT files can be compared with each other. These MRT formatted files will be
used to detect any state differences.

The two test RRCs will be started approximately one minute past the hour and will
generate a MRT formatted RIB dump on the hour and the update files every five minutes.
The test will be stopped when both RRCs have generated their full RIB dump files, which
approximately have the effect that the test will run sixty-five minutes.

This test will be run twice for comparing the resulting RIB files. If both files are the same,
besides the timestamps and some of the other attributes (e.g. peer AS number), it can be
concluded that the integrity of the data is as good as Quagga. The configuration file will
also be compared with the resulting MRT formatted files for testing if the resulting state of
the RIB file was what it was expected to be.

53

10.2. Integrity test with live RRCs
The two test RRCs, using Quagga and ExaBGP, will be connected to two live RRCs that
will announce their routes to the test RRCs. The test RRCs will use the same time interval
of generating the MRT formatted files as in the previous test. This will also result in
approximately twelve update files and one RIB file, both formatted using the MRT
specification. The test RRC using ExaBGP will be configured with a process-per-peer
model were one ExaBGP process connects with one of the live RRCs.

It is harder to determine the integrity of the data since it can not be guaranteed that both
test RRCs generate the same RIB files, which reflects that their state differs. This has to
do with the update messages that they receive and that it can not be guaranteed that both
the test RRCs receive the same update messages at the same time, which could be
caused by the state differences of the connected live RRC. For example, Quagga receives
a certain BGP message earlier than ExaBGP. Since ExaBGP receives the update
messages later, it is perfectly possible that the live RRC received an update message
during that time interval and that it resulted in a state change at the live RRC. The Quagga
test RRC will receive a different update message than ExaBGP, which could result in state
difference between ExaBGP and Quagga.

One other use case that should be kept in mind, is that Quagga is suspected of still
processes the incoming update message while generating the MRT files. The state
machine consumer, stops consuming form the queues when it received a timestamp from
all the queues, which is higher than the maximum allowed timestamp. This will result in a
situation where ExaBGP generates a RIB dump for exactly that timestamp and Quagga
generating a MRT file and still changing the state of the RIB.

This test will be ran twice for comparing the resulting RIB files. If both files are the same,
besides the timestamps and some of the other attributes (e.g. peer AS number), it can be
concluded that the integrity of the data is as good as Quagga. If there are any differences
it will be determined what the root cause of this problem is.

10.3. Monitoring
Zabbix will be used for monitoring and also for creating metrics. These metrics could be
used during the tests and if there are any differences in the RIB files, to determine what
the cause is of these differences. Some scripts are written or modified to gather metrics
from the queueing systems, but also for gathering metrics of CPU and memory usage.

54

10.4. Test setup
During this stage a test setup has been created to simulate a real setup of the prototype.
Several virtual machines were needed to run all the instances that were necessary to run
the prototype. One server was used for virtualisation and was connected with two different
switch ports. This test setup was used during the integrity tests and a schematic scheme
of the network is showed below.

Figure 16 - High level overview of the test setup.

Three virtual machines have a public IP address and are connected to another virtual
switch with its second interface. All the other virtual machines are connected to the NAT
virtual switch and have a private IP address. All traffic from the virtual machines with only
one interface, and which are only connected to the NAT virtual switch, will use the NAT/
PAT router for internet access.

10.5. Test results
This subchapter describes the results of the above described tests. For testing the integrity
of the files, an application has been developed that compares the two resulting RIB
dumps. The RIB dumps will be parsed by libbgpdump, and parsed once again by the
developed application and inserted in the database. All the attributes are compared with
each other.

10.5.1. Results of the integrity test
The test on 23th of May failed, but the test on 24th of May completed successfully. It was
concluded that the integrity of the data is as good as Quagga offers. During the first test,
an issue was discovered with the prototype were the AS number of the peer would be
deleted when it received multiple state messages. This issue has been fixed an in the next
test it was concluded that this patch was indeed solving the problem. Besides from the AS
number that differed in the first test, and not in the second test, all BGP attributes of the
5040 prefixes were the same. All messages were accepted by the state machine and no
messages were lost.

55

10.5.2. Results of the integrity test with live RRCs
During this test several differences were experienced in the attributes of the prefixes, but
could be explained by the differences in time when the BGP message arrived. In the first
test it was concluded that prefix 2a03:200:10::/44 was missing because the allowas-in
option was not configured on the Quagga test RRC, this has been fixed in the second test.
The prefix 84.205.70.0/24 was missing and this was because the prefix was later received
by Quagga than ExaBGP. Other prefixes, which did not have the same attributes, were the
result from messages that arrived at a different time, this was the case with two prefixes.
The total amount of prefixes that have been captured by both the prototype and Quagga
are 1029348 prefixes.

When the second test was executed, two prefixes were missing in the RIB dump of
ExaBGP, which was again due to the differences in the arrival times of the BGP message.
The BGP messages are tagged with the timestamp by ExaBGP on the moment they are
processed, and are only processed by the state machine till a certain maximum allowed
timestamp. There were three prefixes were the attributes differed from each other, again
this was due to the differences in the arrival time of the BGP messages. In one case a
prefix did not make it in to the RIB of Quagga, but it did make it in the update dumps. After
researching why the prefix did not make it in the RIB dump, the only likely cause could be
the AS path that the prefix had. The AS number of the test RRC appeared multiple times in
the AS path of the received route. There were no other attributes that could cause the
prefix not to be inserted in the RIB. During this test around the one million prefixes have
been received by the test RRCs.

During these tests it was also concluded that ExaBGP saves more attributes than Quagga.
Even the unknown attributes are saved in the MRT RIB dumps, whereas Quagga only
dumps the attributes that it can parse. This way, ExaBGP provides users with more
information, even if the attributes may not be known or can not yet be parsed, they are still
inside the MRT files.

10.5.3. RabbitMQ performance
During the tests it was concluded that there was a serious performance bottleneck with the
prototype. After trying to determine the cause, it was concluded that the bottleneck was
caused by RabbitMQ and especially when adding messages to the queue. With
acknowledgements turned on, the time it took to add all the messages to the queue was
around the twenty to thirty minutes. When the acknowledgements were turned off, it only
took about two to three minutes.

Figure 17 - Messages in RabbitMQ.

Figure 17 shows that the first test with acknowledgements, around 09:32, was executed.
Around 13:00 a test was performed without the acknowledgements. As the figure reveals,
with acknowledgements turned off, more messages can be added per five minutes.

56

Figure 18 shows that hundred thousand messages are added in 5 minutes without
acknowledgements.

Figure 18 - Messages in RabbitMQ.

Figure 19 shows that twenty thousand messages can be added in 5 minutes with
acknowledgements.

Figure 19 - Messages in RabbitMQ.

It could be the reason that the disk has to perform to many operations, the peak was
around nine hundred operations per second, which is showed in the image below.

Figure 20 - Disk I/O of RabbitMQ server 1.

Note how relatively low the amount of operations are that need to be performed when the
acknowledgements are turned off.

10.6. Conclusions
This subchapter describes if the prototype meets the requirements that are listed in
chapter “5.3 MoSCoW scheme.”26

57

26 If the readers wants to have more information about the requirements, it is advised to read the Research
Report that has been added as an appendix to this document

10.6.1. Announcements of anchor and beacon IPs
This requirement is supported by ExaBGP. Although it has not been tested during the tests
described in this chapter, it has been confirmed that routes can be announced to other
peers.

10.6.2. MRT formatted files
This requirement is supported by this solution. The state machine can produce MRT
formatted files, containing the BGP open, keepalive, update messages but also state
changes. The state machine can also produce the RIB dumps formatted according to the
MRT specification.

10.6.3. Raw data
This requirement is supported by this solution. There is a new option in ExaBGP, which
has been developed during this project, to add the raw message inside the JSON string.
The messages can be retrieved from the RabbitMQ queues and are also used in the state
machine.

10.6.4. Metadata
This feature is supported by ExaBGP. There is a new option in ExaBGP to receive the
keepalive messages from the peer and send it to the helper application. The helper
application, in this case the producer, adds these messages in the RabbitMQ queues.
These keepalive messages can later on be retrieved by consumers and could be used to
determine if an RRC is still alive. Since keepalive messages are always send from a peer
and when the RRC is offline, no keepalive messages will be added to the queues. If all
peers are offline then there are no keepalive messages, but then there is also nothing to
process, which basically means that the RRC is offline. The state changes, which are also
a part of the metadata, as is described in chapter “5.19 Metadata” of the research paper, is
also added in the queues. These state changes could be used to determine the state of
the peer.

10.6.5. Ordering
The messages are stored in an ordered sequence in the RabbitMQ queues, as is
described in chapter “9.3.7 Tests performed.”

10.6.6. Less delay
This solution allows that future work will bring the overall processing delay down. It
provides messages in a stream oriented manner and consumers can process this data.
The overall process delay, that is involved in RIS, depends on the overall RIS system and
not only this solution.

10.6.7. Same attributes
The same attributes and maybe even more attributes are available in the JSON strings
and MRT formatted files. This is because the raw data is added in the JSON string, so no
attributes are lost from the moment ExaBGP receives a BGP message till the moment the
message has been added in the queue.

10.6.8. Scaling
As stated earlier, this needs to be further tested. All the components of itself, in the overall
prototype, are scalable but it needs to be tested how scalable it is. More nodes can be
added to the RabbitMQ cluster and more processes can be launched for having several
processes to handle multiple connections. But it must be tested where the bottlenecks are
and how scalable the system itself is.
58

10.6.9. eBGP multihop
This feature is supported by ExaBGP and has been used in the test setup, since the test
RRCs are connected with live RRCs.

10.6.10.Live data stream
Yes, this requirement is supported by the prototype. The messages that the producer
receives from ExaBGP are added in the RabbitMQ queues. When consumers connect and
pull messages from the queue, they will receive a stream of data instead of the batch
oriented process used in the current RRCs. The delay that is involved from the moment
that ExaBGP receives the message and when the consumers receive the message,
depends on the processing speeds of ExaBGP, the producer, RabbitMQ and the
consumers. It is near to impossible that there is a live data stream, but this is near close to
a ‘live’ data stream.

10.6.11.Integrity of data
This solution provides even higher integrity than Quagga, since it also dumps the unknown
attributes, from libbgpdump’s point of view. To clarify this requirement, the integrity of the
data means that no data is lost from the moment a BGP message is received till the
moment the MRT formatted files are generated. During the tests it was concluded that the
same attributes with the prefixes have been received by ExaBGP and that the same MRT
files have been generated when you compare its content.

10.6.12.Extensible
This requirement is supported by the prototype. ExaBGP, the producer and the consumers
are developed in such a way that extra features could be added to these systems in a
modular way. When it is necessary to create a whole new application for processing, the
application can connect to a queue, and pull the messages from these queues. In such a
way independent applications can be developed and run concurrently without intervening
each other. But as stated earlier, it is also possible to extend the feature set of ExaBGP,
the producer and consumers.

10.6.13.High resolution timestamp
As described in chapter “9.3.1 ExaBGP modifications” this feature has been added to
ExaBGP.

10.6.14.Authorisation and encryption
At this moment the traffic between the producer, consumers and RabbitMQ are not using
authorisation or encryption. However, it is possible to add this, since authorisation and
encryption is supported by RabbitMQ27. The current library that is in use, the pika Python
library, currently only supports authentication and encryption28. To add support for this in
the producer and consumers it requires some code changes. If the RIPE NCC decides that
only internal applications can connect with the queues, it requires that the RabbitMQ
queues can only be reached from within RIPE NCC’s network.

59

27 For more information about the authorisation and encryption capabilities of RabbitMQ, please visit the
following websites: http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-
in-rabbitmq-231/, https://www.rabbitmq.com/ssl.html (RabbitMQ).

28 For more information about the authentication and encryption support in pika, please visit the following
websites: http://pika.readthedocs.org/en/latest/modules/credentials.html, http://pika.readthedocs.org/en/
latest/examples/using_urlparameters.html (Pika, Read the docs).

http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
https://www.rabbitmq.com/ssl.html
https://www.rabbitmq.com/ssl.html
http://pika.readthedocs.org/en/latest/modules/credentials.html
http://pika.readthedocs.org/en/latest/modules/credentials.html
http://pika.readthedocs.org/en/latest/examples/using_urlparameters.html
http://pika.readthedocs.org/en/latest/examples/using_urlparameters.html
http://pika.readthedocs.org/en/latest/examples/using_urlparameters.html
http://pika.readthedocs.org/en/latest/examples/using_urlparameters.html

11. Conclusion
This chapter describes the conclusion of the following main question:
“How can the current implementation of the RIS Route Collector be replaced with a better
alternative, aimed to process updates faster, make information easier to integrate in the
RIPE NCC Hadoop storage backends (e.g. through XML, JSON, or YAML), and meet the
gathered requirements?”

As outlined in the research report and chapter 7 and 8 of this document, the best solution
is not one application or program, but a modular approach with several programs that
depend on each other. As outlined in chapter 8, the proposal was to use a custom solution
based on ExaBGP and a queueing mechanism that holds the messages. Updates can be
processed faster, and can be processed by several applications, as the update messages
resist in a queue. Processing speed depends on the consumers, which consume
messages from the queue, and can also insert the messages in the HBase tables. The
messages of ExaBGP are structured in a JSON format and can be parsed by well known
programming languages.

It is also outlined in chapter 10.6 that all requirements are met, except authorisation and
encryption. This can easily be added to the current prototype and is not a requirement that
must be in this version of the prototype. The integrity of the state, and its resulting RIB and
update dumps, can be proven to be as good as Quagga. It is also the case that all
attributes are saved in the RIB dumps, also attributes that Quagga drops.

The only thing that needs to be done is more scalability testing, which is also outlined in
chapter “12. Recommendations.” All the must and could requirements are met in the
current version of the prototype. The only ‘could’ requirement that is not met with the
current version of the prototype is the ‘Authorisation and encryption’ requirement. With a
few modifications, as outlined in chapter 10.6.14, it is possible to meet this requirement in
a new version of the prototype.

Therefore, the end conclusion is that the best solution, to replace the current RIS Route
Collectors, is a custom solution based on ExaBGP. It is proven, by testing the prototype,
that it is indeed the solution that the RIPE NCC is looking for, based on the requirements.
Only more testing needs to be done before this prototype can be used in a production
environment. The integration of storage backends, like a Hadoop storage backend, is also
possible, which is outlined in chapter 9.4, using the JSON messages in the queue.

60

12. Recommendations
This chapter describes some recommendations for this project.

12.1. Prototype recommendations
There are several recommendations for the overall prototype. These recommendations are
for improving throughput or improving the overall working of the prototype.

12.1.1. Process manager
Only applies to the ExaBGP producer. Currently, when one of the processes exits without
knowledge of the other processes, the application will hang or crash. Some kind of
manager should be created that monitors the processes and when one process crashes
that the manager will respawn that process.

12.1.2. Pipe connections
Only applies to the ExaBGP producer. It could be the case that a deadlock occurs when
too many messages are added in the pipe connections. During the time that the prototype
was used, this problem did not occur. However, tests should be performed or another
implementation should be used, for communicating between the different processes in the
ExaBGP producer.

12.1.3. Implementation of local saved messages
Only applies to: Producer. The save_local function in the producer should be redesigned
and more tested to see if the save_local functions saves all messages locally on high load.

12.1.4. Maximum allowed timestamp
Only applies to: State machine. Currently, the timestamp is used for determining the
maximum allowed time interval and the filename of the MRT file. The maximum allowed
time interval is used to determine if its time to stop reading from a queue or to check if a
dump file should be created. After the file has been created the maximum allowed
timestamp is set to zero and on the next iteration it is determined what the next maximum
allowed time interval should be. It could lead to situations were one timestamp is
significantly higher than the other timestamps in the other queues. This could be improved
by just increasing the maximum allowed time interval after the dump file has been created,
based on the previous known maximum allowed timestamp.

12.1.5. Less delay
The goal of the new RIS system is to have less delay involved than with the current RIS
implementation. The prototype is build to allow future work to gain less delay with the
overall RIS system. It involves more work to make the overall system faster and to gain
less delay, since the post processing mechanisms still rely on the MRT formatted files. The
prototype is backwards compatible and still creates the MRT formatted files, but faster
processing could be gained by making the current mechanisms be able to work with the
JSON messages.

12.1.6. Database
The state machine currently uses SQLite for storing the update messages and for storing
its state. If the database gets somehow corrupted, it can only re-create state when the
RRC is restarted. Newer versions of the state machine should use the data, which is
saved in HBase, to re-create state. It may also be useful to switch from SQLite to HBase
and store state in there, so that other applications can query for the state in HBase.

61

12.1.7. RabbitMQ acknowledgements
As explained in chapter 10.5.3 processing efficiency could be gained when turning of the
acknowledgements. The only problem with turning off acknowledgements is that the
connection can get closed and it could be a problem in the library that is being used29. It is
advisable to retain the acknowledgements, so that the producer knows if the message has
been added to the RabbitMQ queues. To determine if the problem may be caused by the
relatively high I/O operations, it is advised to test how RabbitMQ behaves when dedicated
servers are used instead of virtual machines.

12.1.8. Queue deadlock
Only applies to: State machine. It could be the case when one queue stays empty that a
deadlock occurs. The state machine waits before every queue has reached the maximum
allowed timestamp. It should be the case when one queue stays empty, for some
configurable amount of time, the state machine stops waiting for that queue.

12.1.9. Multi processes or threads for state machine
Only applies to: State machine. Efficiency might be gained by having a multi-process
architecture were every process connects to one queue.

12.2. Testing recommendations
This subchapter describes tests that should be performed on the prototype. The
recommendations outlined here could be used as input for a next project that is focussed
on testing the prototype. These test recommendations could be used for testing the
application for production readiness, whereas the original prototype was only meant for
testing if it could meet all the requirements.

62
29 Github issue: https://github.com/pika/pika/issues/397 (Pika, 30/05/2014)

https://github.com/pika/pika/issues/397
https://github.com/pika/pika/issues/397

12.2.1. Scalability
For properly testing the scalability of the overall solution, several tests need to be
performed, and the results need to be compared with each other. The most important part
that needs to be tested is the scalability of the producer and consumers. Since the whole
concept, from the beginning, is generating state per RRC, it should also be tested if the
current producers and consumers are doing this efficiently and provide mechanisms to
scale when more peers are willing to connect with one of the RRCs based on the
prototype.

For testing this, it is recommended, that the prototype is connected with a subset of the
peers. Tests need to be performed what the influence is of having only one ExaBGP
process connect with all of the RRCs, but also the other way around, testing how the
application behaves when it is connected on a process-per-peer basis. Using such a
model, an ExaBGP process gets launched for every peer, and process all the messages
(e.g., putting it in the queue or saving it locally).

Another test that needs to be performed is the scalability of the state machine. Can it
handle the messages of several peers and are there any bottlenecks in this one process
model and that uses SQLite for saving the state? Tests need to be performed if a solution
based on HBase or another SQL solution can better scale that the current implementation.

The queueing mechanism is also a component in the overall architecture that needs to be
tested. Is the queueing mechanism scalable enough or is there a point when adding more
nodes to the cluster is not useful anymore? Such scenarios should be tested.

12.2.2. Unknown attributes
One of the other requirements, listed in the requirements list, is the RAW data that exists
in the ExaBGP JSON messages. First tests show that indeed all the RAW data is included
in the JSON string, but it also needs to be tested how ExaBGP behaves when unknown
attributes are send to ExaBGP.

Since the intention is to gather as much as data as is possible, it also involves gathering
messages where the attributes are unknown to ExaBGP. It needs to be tested how
ExaBGP behaves, which could be done by replaying BGP messages where the attributes
are unknown, and send these messages to ExaBGP itself. The resulting state of the state
machine consumer could then be determined by looking at the RIB dumps. If the same
attributes are present, as in the original BGP message, it can be concluded that even
unknown attributes, from ExaBGP’s point of view, are saved in the MRT files.

63

13. Reflection
This chapter describes the process that has been undertaken during this project, but this
chapter will also be used to reflect on the skills, which were necessary to carry out the job.

13.1. Skills
This subchapter will reflect per skill if it was indeed necessary for this graduation project. It
will also outline why, from the author’s point of view, the skill was achieved.

13.1.1. I.An3
The official description of this specific skill is: “An existing, complex, large-scale or
worldwide research on technology or methodology and analysing alternatives.”

This is in fact the whole first stage of the project, the Research stage, which was a whole
stage dedicated on researching possible alternatives for the RRC systems and to create a
proposal based on the research. The size of the research will be qualified under, ‘complex’
and ‘large scale’ research, since a lot of parties are involved, but also because it needs to
be a solution for the problems that the RIPE NCC is facing with the current system. All the
research that has been done can be found in the research report, which has been included
as an appendix.

13.1.2. I.Ad3
The official description of this specific skill is: “Ability to apply argumentation from a tech,
business, costs/benefits, risks and legislation perspective.”

This specific skill was used during the first stage of this graduation project. It was
necessary to have good arguments for defending the decisions that were made in the
proposal, but also to defend why the proposal is the best decision that could be made.
Arguments were from a technical point of view, extensibility and maintainability, and a
costs/benefits points of view. The cost was calculated in time, the time that was needed to
be invested in the solution (e.g., adding extra functions). All the arguments can be found in
the research report, which has been included as an appendix.

13.1.3. I.On3
The official description of this specific skill is: “Design a secured, multi-site, worldwide
business network including possible security measures with specialistic and state-of-the-
art technology.”

The network and infrastructure that is necessary for the prototype and eventually for the
production site, is a secure multi-site business network. Although it may seem that not too
much effort has been in invested in creating this whole multi-site, secured, state-of-the-art
network, keep in mind that the whole solution is based from this point of view. The
prototype does not send its traffic encrypted to the RabbitMQ servers, but only minor code
changes are necessary to support such a feature, since RabbitMQ supports this.
Generating the MRT formatted files which are lated processed by the legacy system, all
these different components of the network needs to be supported by the application.

Therefore, from the author’s point of view, these specific skills has indeed been necessary
during this project. Without this skill, it was not possible to deliver an application which
keeps all these different factors in mind, while developing and deploying such a prototype.

64

13.1.4. I.Re3
The official description of this specific skill is: “Being able to prepare a customised
application for deployment and testing.”

This specific skill was necessary during the last stage of this project. The prototype
needed to be tested, a deployment of the test setup was necessary, all of this was done by
using this specific skill. Also using monitoring software and use the results as a basic of a
conclusion falls under this skill. It is not only deploying and testing the prototype, but also
correlating the results of the test, are the times when it is necessary to use this skill.

13.2. Reviews
On 28th of May a mid-term review was held to review the student. The review has been
added as an appendix of this document and has the following conclusion :
“Wouter has performed well throughout his project, and designed and delivered a useful
prototype system in a well-organised and coordinated manner.”

13.3. Personal goal
One personal goal, of the author, was to improve verbal and written expression. During the
project the author was exposed to the English language and improved his writing and
verbal skills. Documentation needed to be written, but also presentations needed to be
given for the colleagues of the RIPE NCC.

The technical skills that the author wanted to improve on, such as BGP and knowledge
about inner workings of systems, were a personal goal of the author. During this project a
lot of knowledge was gain about BGP, the inner workings of systems, but also how
different systems can be created to work with each other (e.g. the producer, which adds
messages in the queue and the consumers that read these messages). During the
development stage, more experience was gained with Python during the project, since the
producer and consumers were written in Python.

13.4. Meetings
During the graduation project there were weekly meetings where the status of the project,
and the next steps that should be taken, were discussed. These weekly team meetings
were also used for taking decisions on the directions that the project should go to. Input for
these meetings were both from the author and the supervisors of the RIPE NCC. They
wanted to know what the status of the project was, and the author wanted to offer
proposals with arguments, for taking decisions related to the direction of the project. These
proposals were mostly presented during a presentation for the staff of the RIPE NCC or
during the meetings.

65

14. Resource list
This chapter lists all the resources that have been used during this project.

Books:
• Schagen, J.D, van der Kwaak, W., Leenstra E., Smit. W. en Vonken F. Bachelor of ICT -

domeinbeschrijving, Amsterdam, 2009

Publication of an institute:
• A Guide to the Business Analysis Body of Knowledge, International Institute of Business

Analysis, Whitby, ON (Canada), 2009

Websites:
• http://www.openbgpd.org/
• http://www.ripe.net/
• http://www.rabbitmq.com/
• http://hornetq.jboss.org/
• http://zeromq.org/
• http://kafka.apache.org/

Specific page of websites:
• http://www.ripe.net/lir-services/ncc/staff/ripe-ncc-staff-structure (RIPE NCC staff

structure)
• https://wiki.python.org/moin/GlobalInterpreterLock (Information about Python GIL)
• https://docs.python.org/dev/library/multiprocessing.html#multiprocessing.Connection

(Information about the multiprocessing pipe connections)
• http://wiki.apache.org/hadoop/Hbase/%20DataModel#row (HBase row lexicographical

ordering)
• https://code.google.com/p/dpkt/ (Google Code DPKT project page)
• https://github.com/YoshiyukiYamauchi/mrtparse (Github mrtparse project page)
• https://github.com/pika/pika/issues/397 (Issue listed on Pika Github page)
• http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-

in-rabbitmq-231/ (Authentication and authorisation mechanisms in RabbitMQ)
• https://www.rabbitmq.com/ssl.html (Encryption mechanism RabbitMQ)
• http://pika.readthedocs.org/en/latest/modules/credentials.html (Pika authentication

mechanisms)
• http://pika.readthedocs.org/en/latest/examples/using_urlparameters.html (Pika SSL

mechanism)
• http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq (BGPmon

Peering FAQ)
• http://www.slideshare.net/charmalloc/apache-kafka (Apache Kafka presentation)

RFCs or drafts:
• https://tools.ietf.org/html/rfc6396 (MRT RFC)
• http://tools.ietf.org/html/draft-ietf-grow-bmp-07 (BMP draft)
• http://www.ietf.org/rfc/rfc4271.txt (BGP RFC)

66

http://www.openbgpd.org
http://www.openbgpd.org
http://www.ripe.net
http://www.ripe.net
http://www.rabbitmq.com
http://www.rabbitmq.com
http://hornetq.jboss.org
http://hornetq.jboss.org
http://zeromq.org
http://zeromq.org
http://kafka.apache.org
http://kafka.apache.org
http://www.ripe.net/lir-services/ncc/staff/ripe-ncc-staff-structure
http://www.ripe.net/lir-services/ncc/staff/ripe-ncc-staff-structure
https://wiki.python.org/main/GlobalInterpreterLock
https://wiki.python.org/main/GlobalInterpreterLock
https://docs.python.org/dev/library/
https://docs.python.org/dev/library/
http://wiki.apache.org/hadoop/Hbase/%20DataModel#row
http://wiki.apache.org/hadoop/Hbase/%20DataModel#row
https://code.google.com/p/dpkt/
https://code.google.com/p/dpkt/
https://github.com/YoshiyukiYamauchi/mrtparse
https://github.com/YoshiyukiYamauchi/mrtparse
https://github.com/pika/pika/issues/397
https://github.com/pika/pika/issues/397
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
http://www.rabbitmq.com/blog/2011/02/07/who-are-you-authentication-and-authorisation-in-rabbitmq-231/
https://www.rabbitmq.com/ssl.html
https://www.rabbitmq.com/ssl.html
http://pika.readthedocs.org/en/latest/modules/credentials.html
http://pika.readthedocs.org/en/latest/modules/credentials.html
http://pika.readthedocs.org/en/latest/examples/using_urlparameters.html
http://pika.readthedocs.org/en/latest/examples/using_urlparameters.html
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://bgpmon.netsec.colostate.edu/index.php/join-the-peering/peering-faq
http://www.slideshare.net/charmalloc/apache-kafka
http://www.slideshare.net/charmalloc/apache-kafka
https://tools.ietf.org/html/rfc6396
https://tools.ietf.org/html/rfc6396
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://tools.ietf.org/html/draft-ietf-grow-bmp-07
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc4271.txt

15. Appendixes
All documents and source code, which has been developed during this project, are added
as an appendix. It is decided, with the approval of the Hogeschool van Amsterdam30, that
all appendixes will be delivered on a CD. If a CD was not included with the reader’s copy
of this document, the reader can ask for a copy using the contact details in this document.

67
30 During the mail conversation on Tuesday 13th of May 2014

