
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Selection of Mobile Edges for a Hybrid

CrowdSensing Architecture
Dimitri Belli

Department of Computer Science

University of Pisa, Italy

dimitri.belli@di.unipi.it,
https://orcid.org/0000-0003-1491-6450

Stefano Chessa
Department of Computer Science

and Istituto di Scienza e Tecnologie

dell�Informazione CNR-ISTI

University of Pisa, Italy

stefano.chessa@di.unipi.it,
https://orcid.org/0000-0002-1248-9478

Antonio Corradi
Dipartimento di Informatica: Scienza e

Ingegneria
University of Bologna, Bologna, Italy

antonio.corradi@unibo.it,
https://orcid.org/0000-0002-5107-1023

Giampiero Di Paolo
Department of Computer Science

University of Pisa, Italy
giamdip@gmail.com

Luca Foschini
Dipartimento di Informatica: Scienza e

Ingegneria

University of Bologna, Bologna, Italy

luca.foschini@unibo.it,
https://orcid.org/0000-0001-9062-3647

Michele Girolami
Istituto di Scienza e Tecnologie

dell�Informazione CNR-ISTI

National Council of Research, Pisa, Italy
michele.girolami@isti.cnr,it,

https://orcid.org/0000-0002-3683-7158

Abstract � Mobile crowdsensing aims at the collection of

sensor data on the environment by leveraging personal devices,

usually smartphones. Its popularity is due to the ability of

reaching capillary even the most remote areas (provided

humans live there), with no infrastructure costs. This is possible

because it leverages on existing 4G/5G communication

infrastructures that are now rapidly evolving towards edge

computing models. In this work we address the synergy between

mobile crowdsensing and multi-access edge computing by

analysing and assessing strategies for the selection of fixed and

mobile edges to support the collection of mobile crowdsensing

data.

Keywords � mobile crowdsensing, multi-access edge

computing, clustering, sensor data collection

I. INTRODUCTION

Mobile Crowdsensing (MCS) [1] technologies are
becoming a precious source of information for the
optimization and management of smart cities, due to their
ability to capillary collect large amount of data of a wide
range of types. The key of their success lies in the wide
diffusion of personal devices (wearable, smartphones etc�)
that people carry with them almost all the time, and that
embed a wide range of sensors and powerful data fusion
algorithms that enable an even wider range of sensing
applications. In recent years, MCS has inspired research
towards aspects, like the optimization of the energy
consumption of the users� devices [2, 3] and of the task
assignment [4] or the massive involvement of MCS
volunteers [5].

However, MCS technologies do not exist alone. They are
possible because Internet provides ubiquitous connectivity,
and powerful servers in the cloud can manage the flow of data
from billions of devices worldwide. More recently, this
infrastructure is becoming hierarchical, where localized,
fixed servers at the edge of the network, called in the
following Fixed Multi-access Edge Computing nodes
(FMECs) provide a first level of data filtering, aggregation,
analysis and storage, to reduce the burden on the network
core and on the remote cloud servers. This infrastructure is
commonly known as Multi-access Edge Computing (MEC)
[6].

A large amount of work in the last few years has focused
on the development of synergies to achieve a strict integration
between MCS and MEC, for MCS applications devoted to
data collection for off-line, big-data analytics. These
applications require a huge effort of data collection and
transmission to the personal devices, while, at the same time,
do not have stringent requirements in terms of latency. A
conventional use of MCS and MEC technologies in this case,
would require the personal devices a continuous activity of
collection and data transmission through broadband wireless
links even to reach the fixed MEC. However, considering that
the latency requirements are rather relaxed in this case, we
consider architectures in which the communication with the
FMEC can also happen opportunistically by short range radio
interfaces (like Bluetooth or WiFi) when the user becomes in
range with the edge itself [7]. In the effort of a further
reduction of communication overhead, [8] adopted bloom
filters to reduce the number of redundant data transmitted to
edge nodes. Furthermore, in order to reduce the deployment
and maintenance costs of FMEC [9], the users� devices
themselves may be configured by the MCS platform to act
temporarily as mobile edges. We define them as Mobile
Multi-access Edge Computing nodes (M2ECs) to stress their
ability to opportunistically collect (during their roaming) data
from other user devices that come into their short-range radio
interfaces [10]. That allows to trade the costs of broadband
communications (both in terms of energy and subscription
costs) with latency in the communications.

Along this trend of research, this paper focuses on the
strategies for the selection of FMEC and M2EC and on their
synergies. We build over our previous work [11], in which
we explored the opportunity of selecting M2EC based on the
sociality of users. Differently than that work, however, in the
present work we perform a comprehensive evaluation of
several alternative strategies both for the selection of FMEC
and M2EC, to identify the best combination. In particular, we
consider a selection of FMECs based on the mobility of the
MCS users and we assess clustering algorithm for the
identification of the best places for the deployment of these
edges. Then, we consider a selection of M2ECs based on the
sociality of the MCS users, by leveraging community
detection and centrality measures to select the most �social�
users to promote as M2ECs. Finally, we analyze the
synergetic behavior of both kind of edges.

227

Our simulation experiments conducted over a dataset
obtained from real data of an MCS system, clearly show an
improvement of clustering algorithms as DBSCAN against
heuristics in the selection of FMEC, and a better performance
of heuristics based on betweenness in the selection of M2EC.
The simulations concerning the combined use of FMEC and
M2EC show that the latter can replace more than complement
FMEC, since in many cases they provide a data collection
service to users later receive the same service from the
FMEC.

The rest of the paper presents the hybrid architecture
combining FMEC and M2EC in Section II, the simulation
methodology in Section III, and the results of the simulations
with FMEC alone, of M2EC alone and in combination in
sections IV, V and VI, respectively. Section VII draws the
conclusions.

II. A HYBRID ARCHITECTURE FOR HUMAN EDGE COMPUTING

This section provides some more background material
about our hybrid architecture based on our previous work on
Human-Enabled Edge Computing [10]. That model proposes
to complement FMECs proxies, i.e., static base-stations
which only act as intermediary between devices and the
cloud, with M2EC acting as FMEC at predetermined interval
of time to post logical bounded regions in which people tend
to stay for a while. In particular, as shown in [10] the
monitoring of human movements leveraging MCS can ease
the identification of strategic hotspots where to install M2EC
and then, leveraging local one-hop communications and
store-and-forward principle, it is possible to enable the
migration of data from FMECs to M2EC and vice versa. In
the following we report more details about our platform and
the combined use of MCS, FMEC, and M2EC.

An MCS platform implements a broad-range community
sensing paradigm that consists of three components:
individuals, devices and centralized, cloud-based servers.
The individuals, who express their willingness to take part in
the MCS platform and to its campaigns, wear mobile devices
equipped with sensors, short-range communication interfaces
and the MCS mobile application. The MCS mobile
application can collect data autonomously through sensors or
with the support of the user. Conventionally, data stored
within devices� memory is forwarded to a remote server for
storage or for further processing in two possible ways: (i) via
broadband communication (e.g. 4G LTE or 5G) to directly
connect the mobile device to the server on the cloud; (ii) via
MEC proxies, herein called FMECs, that may be present in
the territory as an additional access layer between the cloud-
level and the core network.

It should be observed that, while the broadband
communications are long-range and then usually available
regardless the position of a mobile device (but they do have a
higher cost for the users), the communications with the
FMEC may instead rely on short-range communications (for
example based on Wi-Fi, with a reduced spatial coverage)
with lower battery of mobile user devices and a reduction of
the communication burden over the core network. In a
Human-Enabled Edge Computing architecture, a further set
of mobile MECs, namely M2ECs, can be implemented by
users� mobile devices, carrying out the same functions of
FMECs. M2ECs are selected from those carried by
individuals and may collect opportunistically all the data
produced by other devices that come in the range of their

short-range radio interfaces. M2ECs are chosen among the
users� devices, based on their opportunity to meet other users�
devices during their travels. M2EC thus introduce a so-called
social coverage [11], which is defined as the set of users�
devices met by a M2EC over a period of time.

Finally, for the sake of space limitation in this paper we
do not report more information about the inner architecture
of our FMEC and M2EC nodes that is currently based on
modern virtualization and containerization technologies, for
which we refer interested readers to [10].

III. EXPERIMENTAL METHODOLOGY

Our experiments rely on the ParticipAct CrowdSensing
project [12] carried out by approximately 170 students from
the University of Bologna, Italy. Volunteers were equipped
with an Android smartphone provisioned with the ParticipAct
mobile app able to track their location every 2.5 minutes
through the Google location APIs. The location is obtained
by the synergistic use of information coming from Wi-Fi Hot
Spot coordinates, GPRS and cell phone base stations.
The dataset collects not only the user�s location but also

feedbacks from users and media content generated by
volunteers. ParticipAct�s data cover a period of 18 months,
from December 2013 to February 2015. For our purposes, we
considered a period of one month, from March 1st to March
31st, 2014. The time frame is based on the widest presence of
the participants in the territory, which occurred in spring
time.
In order to evaluate the performance of the hybrid
architecture introduced in Section II, we implemented a
Python-based CrowdSensing simulator able to mimic the
collection of information from the crowd. The simulator
offers the possibility of selecting a number of FMEC and
M2EC according to a given strategy. We currently support
DBSCAN, grid and random strategies for FMEC selection
(see Section IV), and a M2EC selection strategy [11] based
on two well-known graph centrality measures, namely
betweenness and eigenvector centrality (see Section V). The
simulator also generates an arbitrary number of requests. A
request represents any kind of data a device generates and that
needs to be uploaded to the Cloud. Requests are generated by
randomly selecting devices not previously elected as FMEC
or M2EC. Each request is assigned to a device with a given
timestamp and a TTL. The timestamp denotes the time at
which the device produces new data, while the TTL is the
maximal amount of time before the request is uploaded by
using a direct, broadband communication link to the cloud.
Requests are generated only during daily hours, from 9.00
AM to 8 PM and during the first 3 weeks of March 2014, so
that to enable requests generated during the first 3 weeks of
March to run for completion by the end of March.
For the purpose of this work, we are interested in measuring
the performance of our architecture in satisfying the requests
generated from the crowd to the Cloud by means of short-
range network interfaces. In particular, we assume devices
can interact with interfaces such as Bluetooth or WiFi. To this
purpose, we extract from the GPS traces of ParticipAct a
more compact trace, referred to as the co-location trace. A
pair of users is co-located if their devices can exchange
information with a short-range interface. Therefore, the pair
must lay on the same place at the same time for a time
interval. We assume that users are co-located within a

228

distance up to 100 meters, an acceptable distance for wireless
outdoor communications.
Finally, we assess the performance of the hybrid architecture
proposed by studying how varies latency and the number of

satisfied requests by increasing the number of FMEC, M2EC
and with a combination of them. The latency measures the
time interval between the request generation and the time at
which the request is assigned to a FMEC or M2EC (hence the
request is sent to the Cloud). The number of requests satisfied
assesses the amount of information generated by the crowd
that the architecture can deliver to the Cloud. Table 1
summarizes our experimental settings.

IV. STRATEGIES FOR FMEC SELECTION

The hybrid architecture we propose relies only on the FMEC
(Fixed MEC, see Section II). We identify a number of
strategies for electing a node acting as FMEC. Such strategies
span from spatial clustering to randomly selection. This
sections first describes each of the strategies proposed for
FMEC selection and, second it reports the performance we
obtained.

We adopt a spatial-based strategy, namely DBSCAN (Density-
Based Spatial Clustering of Applications with Noise). It is a
spatial clustering algorithm. Given a set of points located in
the space, the algorithm clusters the closest points according
to a distance measure and a distance threshold !. The
DBASCAN strategy analyses the user�s locations given by the
ParticipAct dataset over a period of 3 weeks, and it returns the
existing clusters. Such clusters correspond to the highest
populated regions; the clusters are finally ranked according to
the number of users inside each cluster so that to select a
subset of them. For every cluster, we identify its centroid
where we assume to deploy a FMEC. We configure DBSCAN

with the haversine distance and a minimum number of
samples set to 10 points and ! = 50 meters.

We also consider two other strategies based on a grid and a
random distribution of FMEC. The grid strategy selects a set
of FMEC deployed according to a regular rectangle grid,
while the random strategy arbitrary deploys FMEC over the
selected region. For both of the strategies, we select a
minimum distance between a pair of FMEC set to 500 meters.
Moreover, we bound the FMEC selection to the Bologna city
centre (see Section III), where the majority of user�s locations
are recorded. Fig. 1 shows the bounding box of the
geographical region we considered for the grid and random
strategies.

We now present the results we obtained by studying the
latency and satisfied requests by varying the number of
FMEC. We vary the number of FMEC in the following range
[6, 9, 12, 16]. Fig. 2 and Fig. 3 show the average latency (in
hours) and the satisfied requests, respectively. As expected,
the higher the number of FMEC the lower the latency. In
particular, we observe that DBSCAN outperforms the grid and
random strategies. The latency with DBSCAN is bound
between 68 hours with 6 FMEC and it decreases down to 64
hours with 16 FMEC. The grid and random strategies show a
similar trend of latency, they are bound between 72 and 75
hours respectively with 6 FMEC and 69 and 65 hours
respectively with 16 FMEC. Concerning the random strategy,
we show the results after several runs of the random strategy
so that to obtain stable values of latency and of the satisfied
requests. Results for the satisfied requests are also shown in
Fig. 3. The DBSCAN strategy reports higher performance

Fig. 2. Performance results for FMEC selection with DBSCAN, grid and
random strategies: latency of satisfied requests

TABLE I.

Property Value

Number of participants 170

Observation period March 1st � 30th 2014

Number of requests 5x103

Request time interval 9.00 AM � 8.00 PM

TTL 7 days

Co-location distance 100 m

FMEC strategies DBSCAN, GRID, RANDOM

M2EC strategies Betweenness, Eigenvector centrality

Fig. 1. Geographical region for grid and random strategies.

Fig. 3. Performance results for FMEC selection with DBSCAN, grid and
random strategies: number of requests satisfied.

229

with respect to the grid and random strategies, in particular the
number of requests satisfied varies from 2031 (40%) up to
2414 (48%). Differently, grid and random strategies obtain the
lowest values with 1551 to 1882 and 1227 to 2252 requests
satisfied respectively. It is worth to notice that the grid strategy
decreases its performance after a certain number of FMEC
selected, from our results we observe that with 12 FMEC the
random strategy performs better than that the grid-based
deployment.

Finally, we show in Fig. 6 the strategy with the lowest latency
and the highest number of satisfied requests, namely
DBSCAN, with 16 FMEC. The figure reports for each values
of latency x, the number of requests y satisfied in x hours. Such
strategy satisfies 2414 of the 5000 requests generated (48%).
The majority of the requests are satisfied within 36 hours, in
particular 690 within 12 hours, 426 within 24 hours, and 235
within 36 hours. From the results presented in this section, we
derive that the MCS architecture based only on FMEC is able
to satisfy at maximum 48% of the total number of requests
generated with an average latency of 64 hours. Sections V and
VI present an enhanced MCS architecture that combines
FMEC and M2EC.

V. STRATEGIES FOR M2EC SELECTION

The MEC architecture analyzed in Section IV relies on fixed
MEC only. We now evaluate an MCS architecture in which
MEC are bound to users with their own mobility and
sociality, we refer to them as Mobile MEC, M2EC.
We refer to the M2EC selection strategy presented in [11].
Such strategy relies on two steps. Firstly, the algorithm
detects the dynamic communities of users. Communities are
clusters of users� devices evolving along with the time.
Secondly, the algorithm selects a representative device from
each community, acting as bridge between the community
itself and the rest of the population. The algorithm takes as
input the list of communities detected and the desired number
of M2EC, and as a result it outputs the devices elected as
M2EC. It follows that the number of M2EC selected can never
exceed the number of communities detected. In order to select
a M2EC for every community, the algorithm measures the
centrality of the community�s members (in our
implementation we rely on the betweenness and on the
eigenvector centrality measures). More precisely, the
algorithm measures the capability of such devices to establish
bindings between the community�s members and devices not

part of such community. Briefly, the betweenness is a
centrality measure based on shortest paths, that is, a node is
assigned a given score on the basis of the number of shortest
paths that cross it. In network theory this value represents the
interaction degree that a node has with other nodes of its
network. Differently, the eigenvector centrality is a measure
of the influence that a node exerts within the network. The
score assigned to a node depends essentially on the score
assigned to each node of its neighborhood. The more the
connections of neighbour nodes the higher the score of the
node itself. We refer to [11] for a detailed description of the
M2EC selection strategy.
In the following we present joint results obtained through the
execution of the algorithm with both betweenness and
eigenvector centrality. As for the FMEC (see Section IV),
each test with M2EC includes a number of requests to be
satisfied (5000 requests). The request expiration time, TTL is
set to 7.5 days. The graphs in Fig. 4 and Fig. 5 show the
average latency and average number, respectively, of
satisfied requests as a function of the number of M2EC
selected. We restricted our analysis to the top 4 communities
detected and therefore we select a number of M2EC ranging
from 1 to 4. Such restriction depends on the nature of the
dataset considered (ParticipAct). Indeed, by running the
community detection algorithm with a time resolution of 30
days, we observe that users of ParticipAct tend to cluster to a
maximum of 10 different communities. In turn, we kept only
the most significant ones pruning small and unstable
communities.
The graph in Fig. 4 shows the latency with both strategies.
The curves have similar trends, the higher the M2EC, the
lower the latency. Eigenvector outperforms betweenness up
to 4 M2EC, after which both of the strategies are comparable.
With the eigenvector measure the latency is bound between
53 hours with 1 M2EC and 35 hours with 4 M2EC, while the
latency for the betweenness measure is bound between 57.16
and 35 hours. For what concerns the average number of
satisfied requests, the two strategies slightly differ. In
particular, we observe that the betweenness increases the
number of requests satisfied, ranging from 2312 (46%) with
1 M2EC up to 3175 (63%) with 4 M2EC, while the
eigenvector ranges from 2753 (55%) with 1 M2EC up to 3089
(61%) with 4 M2EC.

Fig. 5. Performance results for M2EC selection with betweenness and
eigenvectory centrality measures: number of satisfied requests

Fig. 4. Performance results for M2EC selection with betweenness and
eigenvectory centrality measures: latency of satisfied requests

230

When comparing Fig. 4 with Fig. 2 and Fig. 5 with Fig. 3, we
observe that the M2EC strategies always outperform the
FMEC ones. More precisely, the optimal FMEC strategy
(DBSCAN) obtains values of latency higher than that the two
M2EC strategies, in particular 64 hours with 16 FMEC
(DBSCAN) versus 53 and 57 hours with eigenvector and
betweenness respectively, but with only 1 M2EC selected.
Similar considerations apply also for the number of satisfied
requests. In this case the 16 FMEC selected with DBSCAN
are able to satisfy up to 48% of the total requests, while the 4
M2EC selected with eigenvector and betweenness satisfy up
to 63% and 61% respectively.
Fig. 7 reports the latency of the satisfied requests with 4
M2EC selected with the betweenness measure. The trend
shows that the majority of the requests is satisfied during the
first 12 hours, in particular 1618 out of 3175 (50%). From the
results presented in Fig. 3 and Fig. 5, we conclude that the
selection of members of the communities as M2EC reduces
significantly the latency and increases the requests satisfied
as well.

VI. EVALUATION OF THE HYBRID ARCHITECTURE

We now present a combination of the strategies introduced in
Section IV and V. In particular, we evaluate an MCS
architecture made up of FMEC and M2EC. To this purpose,
we select the DBSCAN as the best FMEC selection strategy

and the betweenness centrality as the best M2EC selection
strategy. We present the latency and the average number of
satisfied requests by varying the number of M2EC selected in
the range 1�4 (as discussed in Section V). Concerning the
number of FMEC, we consider 6 FMEC so that to obtain the
maximum performance from the fixed MCS architecture. We
refer to such setting as the hybrid MCS architecture.

Fig. 8 and Fig. 9 show the comparison among hybrid, FMEC
only and M2EC only architectures. From Fig. 8 it is seen that
the latency obtained with the hybrid architecture is the lowest
among the three solutions. In particular, the hybrid
architecture reports latency values ranging from 34 hours with
6 FMEC and 1 M2EC down to 33 hours with 6 FMEC and 4
M2EC. We also observe that the M2EC strategy obtains
latency values comparable with respect to the hybrid
architecture when deploying 4 M2EC. Similar considerations
apply also for the number of satisfied requests (in Fig. 9). In
this case the hybrid architecture allows to satisfy
approximately the 63% of the requests generated. Lower
values are obtained with FMEC architecture only, while
similar results to the hybrid architecture are also obtained with
the M2EC architecture only, selecting 4 M2EC.

The performance analysis reported in Fig. 8 and Fig. 9 leads
us to consider the hybrid architecture as the best choice in
scenario in which is required to reduce the number of M2EC.
In fact, despite the restricted number of M2EC (1 to 3) the
overall performance increases with respect to architectures
only made up of FMEC or M2EC only. Moreover, when the

Fig. 6. Latency of the satisfied requests with DBSCAN and 16 FMEC.

Fig. 8. Performance of hybrid, FMEC and M2EC architectures: latency of
satisfied requests

Fig. 9. Performance of hybrid, FMEC and M2EC architectures: number of
requests satisfied.

Fig. 7. Latency of the satisfied requests with betweenness and 4 M2EC.

231

number of M2EC increases, we observe that the M2EC
contribution is higher than that the contribution given by
FMEC. Therefore, a pure M2EC architecture might be the best
option. We finally show in Fig. 10 the specific contribution of
FMEC and M2EC in terms of the proportion of requests
satisfied. The inner circle shows the proportion with 6 FMEC
and 1 M2EC, the outer circle shows the proportion with 6
FMEC and 4 M2EC. It is worth to notice that the proportion
of requests not satisfied by FMEC or M2EC (the green ribbon)
remains stable along with the different settings. Differently,
the requests satisfied by M2EC (yellow ribbon) increase with
the number of M2EC deployed and, proportionally, the
contribution of FMEC (orange ribbon) decreases.

VII. DISCUSSION AND CONCLUSIONS

The investigation of the synergies between MCS and MEC
is still in an early stage. On the one hand, MEC provides an
infrastructure for the functions of data collection of MCS,
while, on the other hand, MCS itself may provide an extension
to the existing MEC infrastructure by means of M2EC. This
second aspect, however, is still mostly unexplored, and this
work moves in this precise direction. Specifically, we address
the problem of how M2EC can complement and, to same
extent, even replace conventional fixed edges of a MEC
infrastructure. The results presented in our study show that
M2EC can replace more than complement FMEC, since they
reach users that, in most cases, are later reached by FMEC.

 However, although being a significant first step, this work
still leaves space for several improvements. In fact, being
based on a dataset obtained from a real (although
experimental) MCS system, our experiments suffer of the
typical limitation of such datasets of being constrained in time
and space, and in the number and kind of users. This fact
impacts the results of the clustering and of the community

detection algorithms (that we used as primitive mechanisms in
the selection of M2EC), which can only reflect the behaviour
of a (relatively) homogeneous community of students in the
same town. The consequence is that we cannot conclude with
this study that M2EC can really replace FMEC in all cases,
because the communities of users and the places where they
meet may be too limited and overlapped, thus resulting in an
overlapping of the space of activities of M2EC and FMEC. For
this reason, we are now planning simulation experiments also
with synthetic datasets that may complement these results by
removing the above-mentioned limitations.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, �Mobile crowdsensing: current state

and future challenges�, IEEE Comm. Mag., vol. 49, no. 11, pp. 32-39,
2011

[2] F. Anjomshoa, B. Kantarci, "Sober-MCS: Sociability-oriented and
battery efficient recruitment for mobile CROWD-sensing", Sensors
18(5), 2018. Article number 1593.

[3] M. Tomasoni, A. Capponi, C. Fiandrino, D. Kliazovich, F. Granelli, P.
Bouvry, "Why energy matters? Profiling energy consumption of
mobile crowdsensing data collection frameworks", Pervasive and
Mobile Computing 51, pp. 193-208, 2018

[4] S. Chessa, M. Girolami, L. Foschini, R. Ianniello, A. Corradi, P.
Bellavista, �Mobile crowd sensing management with
the ParticipAct living lab�, Pervasive and Mobile
Computing, 38(2017):200-214.

[5] S. Chessa, A. Corradi, L. Foschini, and M. Girolami, �Empowering
mobile crowdsensing through social and ad hoc networking�, IEEE
Communications Magazine, vol 54, no. 7, pp. 108-114, 2016.

[6] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang �A
survey on mobile edge networks: convergence of computing, caching
and communications�, IEEE Access, vol. 5, pp. 6757-6779, 2017.

[7] K. M. S. Huq et al., �Enhanced C-RAN Using D2D Network�, IEEE
Commun. Mag., vol. 55, no. 3, Mar. 2017, pp. 100�107.

[8] M. Marjanovic, A. Antonic, I. P. Zarko, "Autonomous data acquisition
in the hierarchical edge-based MCS ecosystem", 6th IEEE Int. Conf.
on Future Internet of Things and Cloud Workshops, W-FiCloud 2018;
Barcelona; Spain; 6-8 August, pp. 34-41

[9] A. Ahmed and E. Ahmed, �A survey on mobile edge computing�, Proc.
10th International Conference on Intelligent Systems and Control
(ISCO), pp. 1-8, 2016.

[10] P. Bellavista, S. Chessa, L. Foschini, L. Gioia, and M. Girolami,
�Human-enabled edge computing": exploiting the crowd as a dynamic
extension of mobile edge computing�, IEEE Comm. Mag., vol. 56,
no.1, pp. 149�155, 2018.

[11] D. Belli, S. Chessa, L. Foschini and M. Girolami, �A Social-Based
Approach to Mobile Edge Computing�, IEEE International
Symposium on Computers and Communications (ISCC), Natal, Brazil,
25-28 June 2018, pp. 292-297

[12] G. Cardone, A. Cirri, A. Corradi, L. Foschini, The participact mobile
crowd sensing living lab: the testbed for smart cities, IEEE Commun.
Mag. 52 (10) (2014) 78�85

Fig. 10. Details of the contribution of FMEC and M2EC: from 6 FMEC
and 1 M2EC in the inner circle to 6 FMEC and 4 M2EC in the outer circle

232

