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Abstract � Mobile crowdsensing aims at the collection of 

sensor data on the environment by leveraging personal devices, 

usually smartphones. Its popularity is due to the ability of 

reaching capillary even the most remote areas (provided 

humans live there), with no infrastructure costs. This is possible 

because it leverages on existing 4G/5G communication 

infrastructures that are now rapidly evolving towards edge 

computing models. In this work we address the synergy between 

mobile crowdsensing and multi-access edge computing by 

analysing and assessing strategies for the selection of fixed and 

mobile edges to support the collection of mobile crowdsensing 

data. 

Keywords � mobile crowdsensing, multi-access edge 

computing, clustering, sensor data collection 

I. INTRODUCTION  

Mobile Crowdsensing (MCS) [1] technologies are 
becoming a precious source of information for the 
optimization and management of smart cities, due to their 
ability to capillary collect large amount of data of a wide 
range of types. The key of their success lies in the wide 
diffusion of personal devices (wearable, smartphones etc�) 
that people carry with them almost all the time, and that 
embed a wide range of sensors and powerful data fusion 
algorithms that enable an even wider range of sensing 
applications. In recent years, MCS has inspired research 
towards aspects, like the optimization of the energy 
consumption of the users� devices [2, 3] and of the task 
assignment [4] or the massive involvement of MCS 
volunteers [5]. 

However, MCS technologies do not exist alone. They are 
possible because Internet provides ubiquitous connectivity, 
and powerful servers in the cloud can manage the flow of data 
from billions of devices worldwide. More recently, this 
infrastructure is becoming hierarchical, where localized, 
fixed servers at the edge of the network, called in the 
following Fixed Multi-access Edge Computing nodes 
(FMECs) provide a first level of data filtering, aggregation, 
analysis and storage, to reduce the burden on the network 
core and on the remote cloud servers. This infrastructure is 
commonly known as Multi-access Edge Computing (MEC) 
[6].  

A large amount of work in the last few years has focused 
on the development of synergies to achieve a strict integration 
between MCS and MEC, for MCS applications devoted to 
data collection for off-line, big-data analytics. These 
applications require a huge effort of data collection and 
transmission to the personal devices, while, at the same time, 
do not have stringent requirements in terms of latency. A 
conventional use of MCS and MEC technologies in this case, 
would require the personal devices a continuous activity of 
collection and data transmission through broadband wireless 
links even to reach the fixed MEC. However, considering that 
the latency requirements are rather relaxed in this case, we 
consider architectures in which the communication with the 
FMEC can also happen opportunistically by short range radio 
interfaces (like Bluetooth or WiFi) when the user becomes in 
range with the edge itself [7]. In the effort of a further 
reduction of communication overhead, [8] adopted bloom 
filters to reduce the number of redundant data transmitted to 
edge nodes. Furthermore, in order to reduce the deployment 
and maintenance costs of FMEC [9], the users� devices 
themselves may be configured by the MCS platform to act 
temporarily as mobile edges. We define them as Mobile 
Multi-access Edge Computing nodes (M2ECs) to stress their 
ability to opportunistically collect (during their roaming) data 
from other user devices that come into their short-range radio 
interfaces [10]. That allows to trade the costs of broadband 
communications (both in terms of energy and subscription 
costs) with latency in the communications.  

Along this trend of research, this paper focuses on the 
strategies for the selection of FMEC and M2EC and on their 
synergies. We build over our previous work [11], in which 
we explored the opportunity of selecting M2EC based on the 
sociality of users. Differently than that work, however, in the 
present work we perform a comprehensive evaluation of 
several alternative strategies both for the selection of FMEC 
and M2EC, to identify the best combination. In particular, we 
consider a selection of FMECs based on the mobility of the 
MCS users and we assess clustering algorithm for the 
identification of the best places for the deployment of these 
edges. Then, we consider a selection of M2ECs based on the 
sociality of the MCS users, by leveraging community 
detection and centrality measures to select the most �social� 
users to promote as M2ECs. Finally, we analyze the 
synergetic behavior of both kind of edges.  
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Our simulation experiments conducted over a dataset 
obtained from real data of an MCS system, clearly show an 
improvement of clustering algorithms as DBSCAN against 
heuristics in the selection of FMEC, and a better performance 
of heuristics based on betweenness in the selection of M2EC. 
The simulations concerning the combined use of FMEC and 
M2EC show that the latter can replace more than complement 
FMEC, since in many cases they provide a data collection 
service to users later receive the same service from the 
FMEC. 

The rest of the paper presents the hybrid architecture 
combining FMEC and M2EC in Section II, the simulation 
methodology in Section III, and the results of the simulations 
with FMEC alone, of M2EC alone and in combination in 
sections IV, V and VI, respectively. Section VII draws the 
conclusions.  

II. A HYBRID ARCHITECTURE FOR HUMAN EDGE COMPUTING 

This section provides some more background material 
about our hybrid architecture based on our previous work on 
Human-Enabled Edge Computing [10]. That model proposes 
to complement FMECs proxies, i.e., static base-stations 
which only act as intermediary between devices and the 
cloud, with M2EC acting as FMEC at predetermined interval 
of time to post logical bounded regions in which people tend 
to stay for a while. In particular, as shown in [10] the 
monitoring of human movements leveraging MCS can ease 
the identification of strategic hotspots where to install M2EC 
and then, leveraging local one-hop communications and 
store-and-forward principle, it is possible to enable the 
migration of data from FMECs to M2EC and vice versa. In 
the following we report more details about our platform and 
the combined use of MCS, FMEC, and M2EC. 

An MCS platform implements a broad-range community 
sensing paradigm that consists of three components: 
individuals, devices and centralized, cloud-based servers. 
The individuals, who express their willingness to take part in 
the MCS platform and to its campaigns, wear mobile devices 
equipped with sensors, short-range communication interfaces 
and the MCS mobile application. The MCS mobile 
application can collect data autonomously through sensors or 
with the support of the user. Conventionally, data stored 
within devices� memory is forwarded to a remote server for 
storage or for further processing in two possible ways: (i) via 
broadband communication (e.g. 4G LTE or 5G) to directly 
connect the mobile device to the server on the cloud; (ii) via 
MEC proxies, herein called FMECs, that may be present in 
the territory as an additional access layer between the cloud-
level and the core network. 

It should be observed that, while the broadband 
communications are long-range and then usually available 
regardless the position of a mobile device (but they do have a 
higher cost for the users), the communications with the 
FMEC may instead rely on short-range communications (for 
example based on Wi-Fi, with a reduced spatial coverage) 
with lower battery of mobile user devices and a reduction of 
the communication burden over the core network. In a 
Human-Enabled Edge Computing architecture, a further set 
of mobile MECs, namely M2ECs, can be implemented by 
users� mobile devices, carrying out the same functions of 
FMECs. M2ECs are selected from those carried by 
individuals and may collect opportunistically all the data 
produced by other devices that come in the range of their 

short-range radio interfaces. M2ECs are chosen among the 
users� devices, based on their opportunity to meet other users� 
devices during their travels. M2EC thus introduce a so-called 
social coverage [11], which is defined as the set of users� 
devices met by a M2EC over a period of time.  

Finally, for the sake of space limitation in this paper we 
do not report more information about the inner architecture 
of our FMEC and M2EC nodes that is currently based on 
modern virtualization and containerization technologies, for 
which we refer interested readers to [10].  

III. EXPERIMENTAL METHODOLOGY 

Our experiments rely on the ParticipAct CrowdSensing 
project [12] carried out by approximately 170 students from 
the University of Bologna, Italy. Volunteers were equipped 
with an Android smartphone provisioned with the ParticipAct 
mobile app able to track their location every 2.5 minutes 
through the Google location APIs. The location is obtained 
by the synergistic use of information coming from Wi-Fi Hot 
Spot coordinates, GPRS and cell phone base stations.  
The dataset collects not only the user�s location but also 

feedbacks from users and media content generated by 
volunteers. ParticipAct�s data cover a period of 18 months, 
from December 2013 to February 2015. For our purposes, we 
considered a period of one month, from March 1st to March 
31st, 2014. The time frame is based on the widest presence of 
the participants in the territory, which occurred in spring 
time. 
In order to evaluate the performance of the hybrid 
architecture introduced in Section II, we implemented a 
Python-based CrowdSensing simulator able to mimic the 
collection of information from the crowd. The simulator 
offers the possibility of selecting a number of FMEC and 
M2EC according to a given strategy. We currently support 
DBSCAN, grid and random strategies for FMEC selection 
(see Section IV), and a M2EC selection strategy [11] based 
on two well-known graph centrality measures, namely 
betweenness and eigenvector centrality (see Section V). The 
simulator also generates an arbitrary number of requests. A 
request represents any kind of data a device generates and that 
needs to be uploaded to the Cloud. Requests are generated by 
randomly selecting devices not previously elected as FMEC 
or M2EC. Each request is assigned to a device with a given 
timestamp and a TTL. The timestamp denotes the time at 
which the device produces new data, while the TTL is the 
maximal amount of time before the request is uploaded by 
using a direct, broadband communication link to the cloud. 
Requests are generated only during daily hours, from 9.00 
AM to 8 PM and during the first 3 weeks of March 2014, so 
that to enable requests generated during the first 3 weeks of 
March to run for completion by the end of March.  
For the purpose of this work, we are interested in measuring 
the performance of our architecture in satisfying the requests 
generated from the crowd to the Cloud by means of short-
range network interfaces. In particular, we assume devices 
can interact with interfaces such as Bluetooth or WiFi. To this 
purpose, we extract from the GPS traces of ParticipAct a 
more compact trace, referred to as the co-location trace. A 
pair of users is co-located if their devices can exchange 
information with a short-range interface. Therefore, the pair 
must lay on the same place at the same time for a time 
interval. We assume that users are co-located within a 
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distance up to 100 meters, an acceptable distance for wireless 
outdoor communications.  
Finally, we assess the performance of the hybrid architecture 
proposed by studying how varies latency and the number of 

satisfied requests by increasing the number of FMEC, M2EC 
and with a combination of them.  The latency measures the 
time interval between the request generation and the time at 
which the request is assigned to a FMEC or M2EC (hence the 
request is sent to the Cloud). The number of requests satisfied 
assesses the amount of information generated by the crowd 
that the architecture can deliver to the Cloud. Table 1 
summarizes our experimental settings. 

IV. STRATEGIES FOR FMEC SELECTION  

The hybrid architecture we propose relies only on the FMEC 
(Fixed MEC, see Section II). We identify a number of 
strategies for electing a node acting as FMEC. Such strategies 
span from spatial clustering to randomly selection. This 
sections first describes each of the strategies proposed for 
FMEC selection and, second it reports the performance we 
obtained. 

We adopt a spatial-based strategy, namely DBSCAN (Density-
Based Spatial Clustering of Applications with Noise). It is a 
spatial clustering algorithm. Given a set of points located in 
the space, the algorithm clusters the closest points according 
to a distance measure and a distance threshold !. The 
DBASCAN strategy analyses the user�s locations given by the 
ParticipAct dataset over a period of 3 weeks, and it returns the 
existing clusters. Such clusters correspond to the highest 
populated regions; the clusters are finally ranked according to 
the number of users inside each cluster so that to select a 
subset of them. For every cluster, we identify its centroid 
where we assume to deploy a FMEC. We configure DBSCAN 

with the haversine distance and a minimum number of 
samples set to 10 points and ! = 50 meters. 

We also consider two other strategies based on a grid and a 
random distribution of FMEC. The grid strategy selects a set 
of FMEC deployed according to a regular rectangle grid, 
while the random strategy arbitrary deploys FMEC over the 
selected region. For both of the strategies, we select a 
minimum distance between a pair of FMEC set to 500 meters. 
Moreover, we bound the FMEC selection to the Bologna city 
centre (see Section III), where the majority of user�s locations 
are recorded. Fig. 1 shows the bounding box of the 
geographical region we considered for the grid and random 
strategies. 

We now present the results we obtained by studying the 
latency and satisfied requests by varying the number of 
FMEC. We vary the number of FMEC in the following range 
[6, 9, 12, 16]. Fig. 2 and Fig. 3 show the average latency (in 
hours) and the satisfied requests, respectively. As expected, 
the higher the number of FMEC the lower the latency. In 
particular, we observe that DBSCAN outperforms the grid and 
random strategies. The latency with DBSCAN is bound 
between 68 hours with 6 FMEC and it decreases down to 64 
hours with 16 FMEC. The grid and random strategies show a 
similar trend of latency, they are bound between 72 and 75 
hours respectively with 6 FMEC and 69 and 65 hours 
respectively with 16 FMEC. Concerning the random strategy, 
we show the results after several runs of the random strategy 
so that to obtain stable values of latency and of the satisfied 
requests. Results for the satisfied requests are also shown in 
Fig. 3. The DBSCAN strategy reports higher performance 

 

Fig. 2. Performance results for FMEC selection with DBSCAN, grid and 
random strategies: latency of satisfied requests 

TABLE I.   

Property Value 

Number of participants 170  

Observation period March 1st � 30th 2014 

Number of requests  5x103 

Request time interval 9.00 AM � 8.00 PM 

TTL 7 days 

Co-location distance 100 m 

FMEC strategies DBSCAN, GRID, RANDOM 

M2EC strategies Betweenness, Eigenvector centrality 

 
 

Fig. 1. Geographical region for grid and random strategies. 

 

 

Fig. 3. Performance results for FMEC selection with DBSCAN, grid and 
random strategies: number of requests satisfied. 
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with respect to the grid and random strategies, in particular the 
number of requests satisfied varies from 2031 (40%) up to 
2414 (48%). Differently, grid and random strategies obtain the 
lowest values with 1551 to 1882 and 1227 to 2252 requests 
satisfied respectively. It is worth to notice that the grid strategy 
decreases its performance after a certain number of FMEC 
selected, from our results we observe that with 12 FMEC the 
random strategy performs better than that the grid-based 
deployment. 

Finally, we show in Fig. 6 the strategy with the lowest latency 
and the highest number of satisfied requests, namely 
DBSCAN, with 16 FMEC. The figure reports for each values 
of latency x, the number of requests y satisfied in x hours. Such 
strategy satisfies 2414 of the 5000 requests generated (48%). 
The majority of the requests are satisfied within 36 hours, in 
particular 690 within 12 hours, 426 within 24 hours, and 235 
within 36 hours. From the results presented in this section, we 
derive that the MCS architecture based only on FMEC is able 
to satisfy at maximum 48% of the total number of requests 
generated with an average latency of 64 hours. Sections V and 
VI present an enhanced MCS architecture that combines 
FMEC and M2EC. 

V. STRATEGIES FOR M2EC SELECTION 

The MEC architecture analyzed in Section IV relies on fixed 
MEC only. We now evaluate an MCS architecture in which 
MEC are bound to users with their own mobility and 
sociality, we refer to them as Mobile MEC, M2EC. 
We refer to the M2EC selection strategy presented in [11]. 
Such strategy relies on two steps. Firstly, the algorithm 
detects the dynamic communities of users. Communities are 
clusters of users� devices evolving along with the time. 
Secondly, the algorithm selects a representative device from 
each community, acting as bridge between the community 
itself and the rest of the population. The algorithm takes as 
input the list of communities detected and the desired number 
of M2EC, and as a result it outputs the devices elected as 
M2EC. It follows that the number of M2EC selected can never 
exceed the number of communities detected. In order to select 
a M2EC for every community, the algorithm measures the 
centrality of the community�s members (in our 
implementation we rely on the betweenness and on the 
eigenvector centrality measures). More precisely, the 
algorithm measures the capability of such devices to establish 
bindings between the community�s members and devices not 

part of such community. Briefly, the betweenness is a 
centrality measure based on shortest paths, that is, a node is 
assigned a given score on the basis of the number of shortest 
paths that cross it. In network theory this value represents the 
interaction degree that a node has with other nodes of its 
network. Differently, the eigenvector centrality is a measure 
of the influence that a node exerts within the network. The 
score assigned to a node depends essentially on the score 
assigned to each node of its neighborhood. The more the 
connections of neighbour nodes the higher the score of the 
node itself. We refer to [11] for a detailed description of the 
M2EC selection strategy. 
In the following we present joint results obtained through the 
execution of the algorithm with both betweenness and 
eigenvector centrality. As for the FMEC (see Section IV), 
each test with M2EC includes a number of requests to be 
satisfied (5000 requests). The request expiration time, TTL is 
set to 7.5 days. The graphs in Fig. 4 and Fig. 5 show the 
average latency and average number, respectively, of 
satisfied requests as a function of the number of M2EC 
selected. We restricted our analysis to the top 4 communities 
detected and therefore we select a number of M2EC ranging 
from 1 to 4. Such restriction depends on the nature of the 
dataset considered (ParticipAct). Indeed, by running the 
community detection algorithm with a time resolution of 30 
days, we observe that users of ParticipAct tend to cluster to a 
maximum of 10 different communities. In turn, we kept only 
the most significant ones pruning small and unstable 
communities.  
The graph in Fig. 4 shows the latency with both strategies.  
The curves have similar trends, the higher the M2EC, the 
lower the latency. Eigenvector outperforms betweenness up 
to 4 M2EC, after which both of the strategies are comparable. 
With the eigenvector measure the latency is bound between 
53 hours with 1 M2EC and 35 hours with 4 M2EC, while the 
latency for the betweenness measure is bound between 57.16 
and 35 hours. For what concerns the average number of 
satisfied requests, the two strategies slightly differ. In 
particular, we observe that the betweenness increases the 
number of requests satisfied, ranging from 2312 (46%) with 
1 M2EC up to 3175 (63%) with 4 M2EC, while the 
eigenvector ranges from 2753 (55%) with 1 M2EC up to 3089 
(61%) with 4 M2EC.  

 

Fig. 5. Performance results for M2EC selection with betweenness and 
eigenvectory centrality measures: number of satisfied requests 

 

 

Fig. 4. Performance results for M2EC selection with betweenness and 
eigenvectory centrality measures: latency of satisfied requests 
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When comparing Fig. 4 with Fig. 2 and Fig. 5 with Fig. 3, we 
observe that the M2EC strategies always outperform the 
FMEC ones. More precisely, the optimal FMEC strategy 
(DBSCAN) obtains values of latency higher than that the two 
M2EC strategies, in particular 64 hours with 16 FMEC 
(DBSCAN) versus 53 and 57 hours with eigenvector and 
betweenness respectively, but with only 1 M2EC selected. 
Similar considerations apply also for the number of satisfied 
requests. In this case the 16 FMEC selected with DBSCAN 
are able to satisfy up to 48% of the total requests, while the 4 
M2EC selected with eigenvector and betweenness satisfy up 
to 63% and 61% respectively.  
Fig. 7 reports the latency of the satisfied requests with 4 
M2EC selected with the betweenness measure. The trend 
shows that the majority of the requests is satisfied during the 
first 12 hours, in particular 1618 out of 3175 (50%). From the 
results presented in Fig. 3 and Fig. 5, we conclude that the 
selection of members of the communities as M2EC reduces 
significantly the latency and increases the requests satisfied 
as well.  

VI. EVALUATION OF THE HYBRID ARCHITECTURE 

We now present a combination of the strategies introduced in 
Section IV and V. In particular, we evaluate an MCS 
architecture made up of FMEC and M2EC. To this purpose, 
we select the DBSCAN as the best FMEC selection strategy 

and the betweenness centrality as the best M2EC selection 
strategy. We present the latency and the average number of 
satisfied requests by varying the number of M2EC selected in 
the range 1�4 (as discussed in Section V).  Concerning the 
number of FMEC, we consider 6 FMEC so that to obtain the 
maximum performance from the fixed MCS architecture. We 
refer to such setting as the hybrid MCS architecture.  

Fig. 8 and Fig. 9 show the comparison among hybrid, FMEC 
only and M2EC only architectures. From Fig. 8 it is seen that 
the latency obtained with the hybrid architecture is the lowest 
among the three solutions. In particular, the hybrid 
architecture reports latency values ranging from 34 hours with 
6 FMEC and 1 M2EC down to 33 hours with 6 FMEC and 4 
M2EC. We also observe that the M2EC strategy obtains 
latency values comparable with respect to the hybrid 
architecture when deploying 4 M2EC. Similar considerations 
apply also for the number of satisfied requests (in Fig. 9). In 
this case the hybrid architecture allows to satisfy 
approximately the 63% of the requests generated. Lower 
values are obtained with FMEC architecture only, while 
similar results to the hybrid architecture are also obtained with 
the M2EC architecture only, selecting 4 M2EC.  

The performance analysis reported in Fig. 8 and Fig. 9 leads 
us to consider the hybrid architecture as the best choice in 
scenario in which is required to reduce the number of M2EC. 
In fact, despite the restricted number of M2EC (1 to 3) the 
overall performance increases with respect to architectures 
only made up of FMEC or M2EC only. Moreover, when the 

 

Fig. 6. Latency of the satisfied requests with DBSCAN and 16 FMEC. 

 

  

Fig. 8. Performance of hybrid, FMEC and M2EC architectures: latency of 
satisfied requests 

 

  

Fig. 9. Performance of hybrid, FMEC and M2EC architectures: number of 
requests satisfied. 

 

Fig. 7. Latency of the satisfied requests with betweenness and 4 M2EC. 
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number of M2EC increases, we observe that the M2EC 
contribution is higher than that the contribution given by 
FMEC. Therefore, a pure M2EC architecture might be the best 
option. We finally show in Fig. 10 the specific contribution of 
FMEC and M2EC in terms of the proportion of requests 
satisfied. The inner circle shows the proportion with 6 FMEC 
and 1 M2EC, the outer circle shows the proportion with 6 
FMEC and 4 M2EC. It is worth to notice that the proportion 
of requests not satisfied by FMEC or M2EC (the green ribbon) 
remains stable along with the different settings. Differently, 
the requests satisfied by M2EC (yellow ribbon) increase with 
the number of M2EC deployed and, proportionally, the 
contribution of FMEC (orange ribbon) decreases. 

VII.  DISCUSSION AND CONCLUSIONS 

The investigation of the synergies between MCS and MEC 
is still in an early stage. On the one hand, MEC provides an 
infrastructure for the functions of data collection of MCS, 
while, on the other hand, MCS itself may provide an extension 
to the existing MEC infrastructure by means of M2EC. This 
second aspect, however, is still mostly unexplored, and this 
work moves in this precise direction. Specifically, we address 
the problem of how M2EC can complement and, to same 
extent, even replace conventional fixed edges of a MEC 
infrastructure. The results presented in our study show that 
M2EC can replace more than complement FMEC, since they 
reach users that, in most cases, are later reached by FMEC.  

 However, although being a significant first step, this work 
still leaves space for several improvements. In fact, being 
based on a dataset obtained from a real (although 
experimental) MCS system, our experiments suffer of the 
typical limitation of such datasets of being constrained in time 
and space, and in the number and kind of users. This fact 
impacts the results of the clustering and of the community 

detection algorithms (that we used as primitive mechanisms in 
the selection of M2EC), which can only reflect the behaviour 
of a (relatively) homogeneous community of students in the 
same town. The consequence is that we cannot conclude with 
this study that M2EC can really replace FMEC in all cases, 
because the communities of users and the places where they 
meet may be too limited and overlapped, thus resulting in an 
overlapping of the space of activities of M2EC and FMEC. For 
this reason, we are now planning simulation experiments also 
with synthetic datasets that may complement these results by 
removing the above-mentioned limitations. 
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