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Abstract—We study the security of the recently proposed
implicit integrity methodology. Implicit integrity is a novel
methodology that supports corruption detection without pro-
ducing, storing or verifying mathematical summaries of the
content such as MACs or ICVs, as typically done today. The
main idea behind implicit integrity is that, whereas typical user
data demonstrate patterns such as repeated bytes or words,
decrypted data resulting from corrupted ciphertexts no longer
demonstrate such patterns. Thus, by checking the entropy of
decrypted ciphertexts, corruption can be possibly detected.

Past contributions to the implicit integrity methodology have
focused on observed patterns on client and server data that
motivate the methodology, entropy definitions for arbitrarily
small messages, and constructions that mitigate data corruption
attacks. In this paper, we extend the known analytical results
concerning implicit integrity addressing content replay attacks as
well. We demonstrate that the class of cryptographic construc-
tions known as ‘random oracles according to observer functions’,
which has been proposed for mitigating data corruption attacks,
is actually simultaneously secure under two different adversary
models: an input perturbing adversary performing content cor-
ruption attacks, and an oracle replacing adversary performing
content replay attacks.

I. INTRODUCTION

We address the problem of detecting both data corruption
and content replay without producing, storing or verifying
mathematical summaries of the content. Such summaries
known as Message Authentication Codes (MACs) [6] [7] or
Integrity Check Values (ICVs) are typically costly to maintain
and use. The standard way of supporting data integrity is
by using MACs produced by cryptographic hash functions
such as SHA256 [4] or SHA3 [5], the use of which in many
cases results in latency, storage and communication overheads.
These overheads are due to the unavoidable message expansion
associated with using the MACs.

The paper studies the security of an alternative methodology
that uses pattern techniques in order to support corruption
detection for the large majority of user data without message
expansion. The main idea is shown in figure 1. If some
content exhibits patterns (i.e., has low entropy), then such
content can be distinguished from random data. Let’s con-
sider that this content is encrypted, as shown in the figure,
where the encryption algorithm is a good pseudo-random
permutation and thus can successfully approximate a random
oracle. The ciphertext which is produced in this way is
no longer distinguishable from random data, under certain
reasonable assumptions about the adversary. Any corruption
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Fig. 1. The concept of implicit integrity

on the ciphertext results in a new ciphertext value, which is
different from the original one. Furthermore, any decryption
operation on this new ciphertext value results in a corrupted
plaintext value which is different from the original one as
well. As decryption is the inverse operation of encryption,
the decryption algorithm also approximates a random oracle
under reasonable adversary models. Because of this reason,
the corrupted plaintext value is also indistinguishable from
random data with very high probability. For these reasons,
checking the entropy of the result of a decryption operation
can be a reliable test for detecting corruption for some data.
References [1] [2] [3] refer to such methodology as ‘implicit
data integrity’ or just ‘implicit integrity’.

The fact that uncompressed, unencrypted user data demon-
strate patterns should not come as surprise. User data often
consist of media data, tables, code, data structures, and other
types of structured data that are characterized by significant
redundancy. For example, there exists a simple pattern which
is frequently encountered in client and server data. This is
the appearance of 4 or more 16-bit words which are equal
to each other in a collection of 32 words. According to the
experimental observations reported in [2] and [3], coming from
over 111 million client cache lines and 1.47 billion server
cache lines, such pattern characterizes 82% of the client data
and 78% of the server data.

To study implicit integrity, reference [3] introduces a class
of constructions referred to as ‘Random Oracles according to
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Observer functions’ (RO2). An observer function is a function
that searches the output of cryptographic systems in order
to detect unusual behavior, such as the presence of patterns.
Patterns can be repeated nibbles, bytes, words or double words.
If an observer function detects unusual behavior with the same
or similar probability in a cryptographic system’s output as
in a random oracle’s output then such cryptographic system
belongs to the class of RO2 constructions associated with the
specific observer function.

The main contribution of this paper is the description of a
security model against both data corruption and replay attacks,
which is associated with implicit integrity and is connected
with the class of RO2 constructions. Specifically, we show
that if a construction is in the RO2 class, then the construction
always supports some form of implicit data integrity, and is
secure in the proposed model. The proposed model comprises
two kinds of adversaries.

First, an input perturbing adversary is an algorithm which is
given a set of ciphertext messages q0, . . . , qm−1, the plaintexts
of which exhibit patterns and a query bound B. The algorithm
succeeds if it finds a ciphertext message y which is different
from q0, . . . , qm−1, the plaintext of which also exhibits pat-
terns. It is considered that the encryption key is unknown.
Security in this adversary model indicates protection against
data corruption attacks.

Second, an oracle replacing adversary is an algorithm which
is also given a set of ciphertext messages q0, . . . , qm−1 the
plaintexts of which exhibit patterns and a query bound B.
The algorithm succeeds if it replaces a set of internal oracles
R0, R1, . . . queried by the decryption system with a new set
of internal oracles R′0, R

′
1, . . ., so that there exists a ciphertext

message y ∈ {q0, . . . , qm−1} the plaintext of which continues
to exhibit patterns even when the oracles R0, R1, . . . of the
decryption system are replaced by R′0, R

′
1, . . .. We discuss that

security in this adversary model indicates protection against
content replay attacks. Content replay attacks are considered
across key domains, where the associated encryption keys of
these key domains are unknown.

II. RELATED WORK

Implicit integrity is introduced in reference [1]. Past con-
tributions to the implicit integrity methodology have either
focused on the entropy properties of client and server data [2]
and entropy definitions suitable for arbitrarily small messages,
or on constructions that mitigate data corruption attacks [3].
Our paper extends these result substantially discussing replay
attacks as well.

Other contributions to the similar concept or robust au-
thenticated encryption [8], [9] base their notion of security
on the indifferentiability or indistinguishability of their pro-
posed constructions from a random permutation or a random
function. Indifferentiability and indistinguishability are mostly
used in these references in the general sense (as in reference
[10]). For example reference [8] proposes a wide block cipher
design (AEZ) and proves that this design is indeed difficult
to distinguish from a wide random permutation. While such

notion of security is useful, and the analysis of references [8],
[9] insightful, implicit integrity is not associated with such
strong notion of security.

One aspect of the methodology introduced in reference [3],
which we also follow in this paper, is that the derivation
of any security statements concerning integrity is decoupled
from the derivations of statements concerning confidentiality.
The constructions studied in this paper support confidentiality
in the well established pseudo-random permutation (PRP)
model, as their output is produced by a set of of pseudo-
random permutations. The constructions also support implicit
integrity according to the notion of security introduced in
[3]. This notion of security reflects the fact that it should
be computationally difficult for an adversary to corrupt some
ciphertext, so that the resulting plaintext demonstrates specific
patterns.

III. PRELIMINARY CONCEPTS

We begin our discussion with the concept random oracles
according to observer functions introduced in [3]. We consider
‘observer functions’ that search cryptographic system outputs
in order to detect ‘abnormal behavior’, such as repetitions of
values of different sizes.

Random oracles according to observer functions are con-
structions which may be distinguishable from ideal primitives,
but appear indistinguishable only with respect to specific
distinguishers. The concept is illustrated in Figure 2. Function
f observes unusual behavior in the values of the output of
a random oracle with probability Pf . The same function f
observes the same unusual behavior in the values of the output
of the real system S with probability Pf,2. If Pf,2 ≤ Pf ·2ε for
a given maximum non-repeating input sequence of size B, and
if this relation holds even when Pf,2 is conditioned upon pre-
vious inputs, then the system S is a “random oracle according
to observer function f” associated with an indistinguishability
parameter ε: S ∈ RO2(f,B, ε).

The query bound B denotes the life time of the construction.
A finite life time B is introduced in the definition of a RO2

construction, so that the construction can contain primitives
which are bijective functions (pseudo-random permutations)
and which within the bounds of the life time B are indistin-
guishable from truncated output random oracles. These prim-
itives are the pseudo-random permutations that encrypt and
decrypt data. Furthermore it is these primitives that support
data confidentiality. We will be denoting these as ‘ingredient
random permutations’.

In order for a construction to be RO2 it needs to satisfy the
condition Pf,2 ≤ Pf ·2ε for non-repeating input. So what does
non-repeating input mean? Having non-repeating input means
that:

• within a lifetime of a construction {y0, y1, . . . , yB−1}
input is not repeating, i.e., yi 6= yj ∀i, j ∈ [0, B − 1];
and

• inputs that result in unusual behavior in one lifetime
{y0, y1, . . . , yB−1} of a construction are not repeated
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Fig. 2. The Concept of a Random Oracle according to an Observer function (RO2)

in any other lifetime {z0, z1, . . . , zB−1} of the same
construction.

RO2 constructions are most useful when the inputs con-
sidered are adversary queries, i.e., corrupted ciphertext val-
ues. In this case, the conditions of non-repeating input are
more meaningful. The intuition behind introducing the non-
repeating input conditions, which are used in the derivation
of our main results below, is that if an adversary repeats
queries as part of the attack strategy, then the system provides
the same output for these repeated queries. Specifically, we
consider that there are no parameters, potentially randomizing
the system which are out of the adversary’s control. Under
this assumption it is clear that it is not beneficial for an
adversary to repeat queries which are unsuccessful, as their
result will be the same. On the other hand, if some queries
are successful, then the adversary does not need to repeat these
queries, as the adversary possesses the knowledge about the
impact of such queries. Because of these reasons, it is not
restrictive to introduce the non-repeating input requirement,
as we consider adversaries that do not repeat their queries to
the construction. We also note that we do not restrict every
input to the construction. We just restrict only the inputs for
which the condition Pf,2 ≤ Pf · 2ε needs to be satisfied.

Definition 1: Observer function. A function f associated with
input strings of length L, f : {0, 1}L → {0, 1} is called an
observer function if it outputs only one of two values 0 or 1.
If for some input x, f(x) = 1, then we will be saying that
input x demonstrates unusual behavior according to observer
function f . We will also be denoting this fact as x ∈ Π(f).

Definition 2: Random Oracle according to an Ob-
server function (RO2). Let {y(0)0 , y

(0)
1 , . . . , y

(0)
m0−1},

{y(1)0 , y
(1)
1 , . . . , y

(1)
m1−1}, . . . be sets of binary strings of length

L, the cardinalities of which satisfy mi ≤ B, ∀i ≥ 0. Let also
f be an observer function associated with inputs of length
L, and R ← 2∞ a random oracle. A function or system
S : {0, 1}L → {0, 1}L is called a random oracle according
to observer function f associated with a life time B and
indistinguishability parameter ε if the following conditions are
true:

i. y
(k)
i 6= y

(k)
j for all y(k)i , y

(k)
j ∈ {y(k)0 , y

(k)
1 , . . . , y

(k)
mk−1}

such that i 6= j, k ≥ 0;
ii. if y ∈ Π(f) and y ∈ {y(k)0 , y

(k)
1 , . . . , y

(k)
mk−1} for some

k ≥ 0, then y /∈ {y(l)0 , y
(l)
1 , . . . , y

(l)
ml−1} for all l 6= k;

iii. for all inputs y and non-empty collections of inputs
y0, . . . , yq−1 such that y 6= y0, . . . , y 6= yq−1, and
y ∈ {y(k)0 , y

(k)
1 , . . . , y

(k)
mk−1}, yi ∈ {y(li)0 , y

(li)
1 ,

. . . , y
(li)
mli
−1}, k ≥ 0, li ≥ 0, 0 ≤ i < q, q ≥ 0, the

following is true:
Prob[S(y) ∈ Π(f) | y0, . . . , yq−1] ≤ Pf · 2ε where
Pf = Prob[truncL(R(y)) ∈ Π(f)]

where the function truncL() used in Definition 2 truncates its
input returning the input’s L most significant bits.

When a system S is a random oracle according to an
observer function f , life time B and indistinguishability pa-
rameter ε, we will be denoting this fact as S ∈ RO2(f,B, ε).
We also note that condition (iii) in Definition 2 covers all
cases where the probability of seeing unusual behavior in
the output of S is conditioned upon any set of input values
different from y of cardinality q. In the special case were
q = 0 (i.e., no conditioning) this third condition is simplified
as Prob[S(y) ∈ Π(f)] ≤ Pf · 2ε. The probability value
Pf will be denoted as ‘observation probability’ or ‘pattern
observation probability’ associated with observer function f
in this document.

Definition 3: Constrained RO2 function. A ‘constrained’
RO2 function or system uses a number of internal invertible
functions which are random permutations and which, for the
life time (i.e., query) bound B used, are practically indistin-
guishable from random oracles in both processing directions.
These are the primitives referred to as ingredient random
permutations. A constrained RO2 system is invertible itself.
One direction is denoted as E and referred to as ‘encryption’,
whereas the other direction is denoted a D and referred to as
‘decryption’. A constrained RO2 system accepts a construction
input y and uses a set of pre-processing, invertible, polynomial
time algorithms a1, a2, . . . , an to compute the inputs to ingre-
dient random permutations which provide a response vector
r. Then, it is this response which is further used in the RO2
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system for processing. Processing is done by an invertible
polynomial time algorithm p() and the input y is no longer
used. A constrained RO2 system is illustrated in Figure 3. In
what follows, whenever we will be using the term RO2 we will
be referring only to constrained RO2 systems. We will also be
using the notation ER0,R1,R2,... and DR0,R1,R2,... to refer to
encryption and decryption systems (encryption and decryption
oracles) with access to the ingredient random permutations
R0, R1, R2, . . .. Furthermore if ER0,R1,R2,... and DR0,R1,R2,...

are RO2 associated with an observer function f , a query bound
B and an indistinguishability parameter ε, we will be denoting
this fact as:

ER0,R1,R2,..., DR0,R1,R2,... ∈ RO2(f,B, ε) (1)

Proposition 1: The set of constrained RO2 constructions is
non-empty. Indeed, at least one construction has been proposed
and proven to be in this class. This is the IVP introduced in
reference [3].

We further note that if algorithms a1, a2, . . . , an are re-
placed by the identity function and the data path of Figure
3 implements a decryption operation, then the ciphertext of
such system is obtained directly from the output of random
permutations R0, R1, R2, . . .. This means that the system does
not compromise the confidentiality offered by R0, R1, R2, . . .
in any way, provided that the implementation of p(), does not
use any secret information also used by the implementations
of R0, R1, R2, . . ..

IV. ADVERSARY MODELS AND MAIN SECURITY CLAIMS

A. Input perturbing adversary

The first type of adversary presented, describes adversaries
which aim in corrupting encrypted data that are stored some-
where, or are in transit, in such a way so that the corruptions
pass undetected. Reference [3] to such type of adversary as
‘input perturbing’ adversary.

The input perturbing adversary models any software process
or physical intruder that aims in intentional corruptions of data.
The underlying assumption of this adversary model is that
the adversary can access data only in their encrypted form.
This adversary can corrupt ciphertext data in any possible
way hoping that the corruptions will result in plaintexts with

patterns, and thus pass undetected. This adversary model is not
unrealistic. In secure network connections or encrypted storage
systems, many attacks originate from sources outside of these
trusted domains. These attackers can possibly inspect a range
of encrypted data, such as the whole encrypted memory of a
computing system, but do not have access to the encryption
keys required for obtaining the corresponding plaintexts.

More formally, the input perturbing adversary is defined as
follows: Let’s consider a pair of encryption and decryption
oracles E and D such that D = E−1 and for which
D,E ∈ RO2(f,B, ε) for some f,B, ε. An input perturbing
adversary MD(q0, . . . , qm−1, B) is defined as a polynomial
time algorithm which:
• has oracle access to D
• has knowledge of m queries q0, . . . , qm−1 to D and their

responses D(q0), . . . , D(qm−1), where the responses
exhibit patterns: D(q0), . . . , D(qm−1) ∈ Π(f)

• can perform at most B non-repeating queries to D as
part of the game, which are other than q0, . . . , qm−1.

The algorithm succeeds if it finds a new input data word
y which is different from q0, . . . , qm−1, the output of which
exhibits patterns, i.e., D(y) ∈ Π(f). The number of query-
response values known m is assumed not to be large enough
so as to leak information about the internals of E, D allowing,
for instance, rainbow table attacks. The advantage of the input
perturbing adversary is defined for the decryption operation as:

Adv(MD(q0, . . . , qm−1, B), f) =

Prob[y ←MD(q0, . . . , qm−1, B); y /∈ {q0, . . . , qm−1};

D(y) ∈ Π(f)]
(2)

B. Oracle replacing adversary

Another type of adversary, which we introduce in this paper
is the ‘oracle replacing adversary’. This adversary is associated
with replay attacks. Replay attacks may happen across key
domains such as network sessions that are encrypted with
different keys, or encrypted memory domains. The model of
the oracle replacing adversary can indeed be associated with
such replay attacks under the assumption that the ingredient
random permutations of an RO2 construction use key values
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which are specific to particular domains of trust. When some
valid encrypted data from one domain is replayed in another
domain, then this replay attack is equivalent to replacing the
ingredient random permutations of a RO2 construction with
another set of permutations, associated with a new domain,
and observing the output.

More formally, lets consider a pair of encryption and
decryption oracles E and D, D = E−1 for which D,E ∈
RO2(f,B, ε) for some f,B, ε and have access to ingredient
random permutations R0, R1, R2, . . .. An oracle replacing
adversary MD(q0, . . . , qm−1, B,R) is defined as a polynomial
time algorithm which:

• has oracle access to DR0,R1,R2,...

• has knowledge of m queries q0, . . . , qm−1 to
DR0,R1,R2,... and their responses D(q0), . . . ,
D(qm−1), where the responses exhibit patterns:
D(q0), . . . , D(qm−1) ∈ Π(f)

• has access to a set R, R = {{R(0)
0 , R

(0)
1 , . . .},

. . . , {R(n−1)
0 , R

(n−1)
1 , . . .}} of n sets of random per-

mutations that have the same input and output length
characteristics as R0, R1, R2, . . . and are all different
from R0, R1, R2, . . .

• can perform at most B non-repeating queries
to DR0,R1,R2,... as part of the game, other than
q0, . . . , qm−1.

The algorithm succeeds if it finds a set of new ingredient
random permutations {R′0, R′1, R′2, . . .} ∈ R and an input
query word y ∈ {q0, . . . , qm−1}, the output of which ex-
hibits patterns when y is applied on an instance of D that
uses the new ingredient random permutations R′0, R

′
1, R

′
2, . . .,

i.e., DR′
0,R

′
1,R

′
2,...(y) ∈ Π(f). As in the case of the input

perturbing adversary, this adversary also does not have any
knowledge about possible keys used by E, D. The advantage
of the oracle replacing adversary is defined for the decryption
operation as:

Adv(MD(q0, . . . , qm−1, B,R), f) =

Prob[{{R′0, R′1, . . .}, y} ←MD(q0, . . . , qm−1, B,R);

y ∈ {q0, . . . , qm−1}; {R′0, R′1, . . .} ∈ R;

DR′
0,R

′
1,...(y) ∈ Π(f)]

(3)

V. MAIN RESULTS

Our main results connect the concept of a random oracle
according to an observer function with security claims associ-
ated with the input perturbing and oracle replacing adversary
models. For the sake of completeness, we begin by stating the
main result of reference [3], which concerns the security of
an RO2 construction in the input perturbing adversary model.

Theorem 1: About the security of an RO2 construction in the
input perturbing adversary model. Given a pair of encryption
and decryption oracles E and D, D = E−1, an observer

function f , a query bound B, and an observation indistin-
guishability parameter ε such that: D,E ∈ RO2(f,B, ε) then
for any input perturbing adversary MD(q0, . . . , qm−1, B):

Adv(MD(q0, . . . , qm−1, B), f) ≤ Pf · 2ε (4)

We note that Pf is the pattern observation probability associ-
ated with observer function f . The proof of Theorem 1 can
be found in reference [3].

A next theorem concerns the security of RO2 constructions
in the oracle replacing adversary model. It is in the proof
of this theorem that we make use of the constraints of RO2

constructions which we introduce in Figure 3 above.

Theorem 2: About the security of an RO2 construction in the
oracle replacing adversary model. Given a pair of encryption
and decryption oracles E and D, D = E−1, an observer
function f , a query bound B, and an observation indistin-
guishability parameter ε such that: D,E ∈ RO2(f,B, ε) then
for any oracle replacing adversaryMD(q0, . . . , qm−1, B,R):

Adv(MD(q0, . . . , qm−1, B,R), f) ≤ Pf · 2ε (5)

where Pf is the pattern observation probability associated with
observer function f .

Proof of Theorem 2: We need to show that for every oracle
replacing adversary:

Prob[{{R′0, R′1, . . .}, y} ←MD(q0, . . . , qm−1, B,R);

y ∈ {q0, . . . , qm−1}; {R′0, R′1, . . .} ∈ R;

DR′
0,R

′
1,...(y) ∈ Π(f)] ≤ Pf · 2ε

(6)

We assume that an adversary exists for which the relation 6
does not hold. This adversary repeatedly succeeds in producing
random permutation replacements and inputs y the outputs of
which exhibit patterns with probability greater than Pf ·2ε. We
show that if such adversary exists then it is not possible for
E, D to be RO2(f,B, ε) which contradicts our assumption.
To prove Theorem 2, we first state and prove a lemma that
bounds the probability of seeing patterns in the output of
an RO2 construction once we replace the ingredient random
permutations.

Lemma 1: Let’s assume that we have a pair of encryption
and decryption oracles D,E ∈ RO2(f,B, ε) for some f,B, ε,
D = E−1, and some input y, such that DR0,R1,R2,...(y) ∈
Π(f). Then for any set of ingredient random permutation
replacements R′0, R

′
1, . . . which are also random permutations,

the probability Prob[DR′
0,R

′
1,...(y) ∈ Π(f)] of seeing patterns

in the output of y is bounded by:

Prob[DR′
0,R

′
1,...(y) ∈ Π(f) |

DR0,R1,R2,...(y) ∈ Π(f)] ≤ Pf · 2ε
(7)

Proof of Lemma 1: We consider a system 1 shown in
Figure 4, where the decryption oracle D accesses the original
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Fig. 4. Replacing ingredient random permutations inside an RO2 construction

ingredient random permutations R0, R1, R2, . . . and in this
system one particular query to R0, R1, R2, . . . returns a query
response vector r. In another system, system 2, the original
ingredient random permutations R0, R1, R2, . . . are replaced
by R′0, R

′
1, . . ., and the same query now returns a different

response vector r′. In system 3 of the figure, the decryption
oracle D accesses the original ingredient random permutations
R0, R1, R2, . . ., but in this system the corresponding query to
R0, R1, R2, . . . returns a response vector r′, which is the same
as the one returned by the permutations of system 2. As the
ingredient random permutations R0, R1, R2, . . . are bijective
functions, they are invertible. By inverting the ingredient
random permutations R0, R1, R2, . . . on the response vector
r′, one computes an input y′ which needs to be provided to
system 3 in order for the ingredient random permutations of
this system to return the same response vector r′, which is
returned in system 2. Due to R0, R1, R2, . . . being bijective
and the RO2 construction constraints introduced in Figure 3,
input y′ must be different from y. Since y′ 6= y, and system 3
is an RO2 construction, then the output of system 3 exhibits
patterns with probability:

Prob[DR0,R1,...(y′) ∈ Π(f) |

DR0,R1,R2,...(y) ∈ Π(f)] ≤ Pf · 2ε
(8)

The proof of Lemma 1 completes by observing that systems
2 and 3 generate the same output. Hence:

Prob[DR′
0,R

′
1,...(y) ∈ Π(f) |DR0,R1,R2,...(y) ∈ Π(f)] =

Prob[DR0,R1,...(y′) ∈ Π(f) |

DR0,R1,R2,...(y) ∈ Π(f)] ≤ Pf · 2ε
(9)

and Lemma 1 is proven. We proceed with the proof of
Theorem 2 by stating and proving one more Lemma:

Lemma 2: Let’s consider an ensemble of ingredient random
permutation sets {R(i)

0 , R
(i)
1 , . . .}, i ≥ 0. Let’s also consider

constructions D,E ∈ RO2(f,B, ε) for some f,B, ε and D =
E−1. We further consider a set of input indices, J0 = 0, J1 >

J0, J2 > J1, . . . for which Ji+1−Ji ≤ B for all i ≥ 0. Using
the constructions E, D and the indices J0, J1, . . ., we define
permutation swapping constructions E′, D′ as constructions
that accept as input discrete sequences of values y0, y1, . . .,
have infinite lifetime as opposed to bounded by B, and provide
output which is obtained as follows:

E′(yj) = ER
(i)
0 ,R

(i)
1 ,...(yj) and D′(yj) = DR

(i)
0 ,R

(i)
1 ,...(yj)

for all yj such that Ji ≤ j < Ji+1

(10)

If E′, D′ are defined by equation 10, then for any input
sequence ỹ0, ỹ1, . . . to D′ which is not repeating inside the
index bounds defined by J0, J1, . . . the following inequality is
true:

Prob[D′(ỹ) ∈ Π(f)] ≤ Pf · 2ε (11)

The fact that input sequence ỹ0, ỹ1, . . . to D′ is not repeating
inside the index bounds means that ỹj′ 6= ỹj′′ for all Ji ≤ j′ <
Ji+1, Ji ≤ j′′ < Ji+1, j′ 6= j′′ and i ≥ 0. Relation 11 holds
for every input ỹ ∈ {ỹ0, ỹ1, . . .}.

Proof of Lemma 2: From the definition of equation 10 it
is evident that E′ and D′ are also encryption and decryption
oracles and that D′ = E′−1. The inputs to decryption oracle
D′ can either result in outputs with patterns or not. On the
other hand, the inputs that result in patterns can be split
into repeating inputs and non-repeating inputs, as inputs from
the sequence ỹ0, ỹ1, . . . to D′ may be repeating across index
bounds. It is sufficient to show that the property Prob[D′(ỹ) ∈
Π(f)] ≤ Pf ·2ε holds for the repeating inputs which produce at
least one output with patterns. This is because the probability
Prob[D′(ỹ) ∈ Π(f)] is trivially 0 if it is known that inputs are
always unsuccessful. On the other hand, for the non-repeating
inputs the property does hold, as the constructions defined by
E′, D′ are RO2 inside the index bounds.

It is easy to see that, for the case of repeating inputs
that produce at least one output with patterns, the property
Prob[D′(ỹ) ∈ Π(f)] ≤ Pf · 2ε holds due to Lemma 1. Indeed
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let’s consider some input ỹj such that Ji ≤ j < Ji+1 for
some i ≥ 0. Let’s also consider that this input, if passed to the
decryption oracle D′, produces output that exhibits patterns:

D′(ỹj) = DR
(i)
0 ,R

(i)
1 ,...(ỹj) ∈ Π(f) (12)

If this input ỹj appears in the input sequence again, outside
the index bounds Ji and Ji+1, then the probability of seeing
patterns at the output of this repeated instance of ỹj is bounded
according to Lemma 1. Specifically, if value ỹj appears again
inside the index bounds Ji′ and Ji′+1 for some i′ 6= i,
then the output of the decryption oracle D′ for this repeated
instance is equal to DR

(i′)
0 ,R

(i′)
1 ,...(ỹj). If we apply Lemma 1

to the sets of ingredient random permutations {R(i)
0 , R

(i)
1 , . . .}

and {R(i′)
0 , R

(i′)
1 , . . .} and to the input value ỹj , we obtain

inequality:

Prob[DR
(i′)
0 ,R

(i′)
1 ,...(ỹj) ∈ Π(f) |

DR
(i)
0 ,R

(i)
1 ,...(ỹj) ∈ Π(f)] ≤ Pf · 2ε

(13)

which completes the proof of Lemma 2.
We note that the inequality 11 of Lemma 2 holds even if the

event D′(ỹ) ∈ Π(f) is conditioned upon inputs to D′ which
are different from ỹ. This is due to two facts. First, that the
construction D′ is RO2 inside the index bounds. Second, that
the probability of seeing patterns in the output of one life time
of D (i.e., one set of index bounds of D′) is conditionally
independent of inputs that appear in other life times of D,
where different sets of ingredient random permutations may
be queried. The proof of this property is similar to the proof
of Lemma 1 and omitted for conciseness.

Completing the proof of Theorem 2: Any instance of D
that queries ingredient random permutations from one of the
sets of R is RO2 by the definition of D and due to the
fact that the permutations contained in the sets of R are
random permutations. Similarly, any permutation swapping
construction D′ which is produced from D and has infinite
lifetime, exhibits patterns in its output with probability which
is bounded according to Lemma 2, provided that the input is
non-repeating inside index bounds.

Now, let’s suppose we have an oracle replacing adversary
M , which is repeatedly successful with probability higher than
the bound Pf · 2ε of relation 6. In every attack, this adversary
succeeds in computing a different y value and a different set
of ingredient random permutations from R all resulting in
patterns with probability > Pf · 2ε. Furthermore, as in the
proof of Theorem 1 [3], this adversary M can be turned into
another adversary M ′ which always returns some output and
is still successful in attacking D with probability > Pf · 2ε.
We consider that such attacks are repeated again and again.
One can see that the attacks performed by adversary M ′ form
a trace of queries to a permutation swapping construction D′

as defined in Lemma 2. The expected value E of the ratio of
successful queries to D′ over all queries made needs to satisfy

the inequality E > Pf · 2ε, due to the assumption about the
existence of the adversary M ′. On the other hand, the same
expected value needs to satisfy the inequality E ≤ Pf ·2ε due
to the fact that Lemma 2 holds, which is not possible. Hence,
Theorem 2 is proven.

VI. DISCUSSION

Our results reduce the proofs which establish security in
the input perturbing and oracle replacing adversary models to
showing that a cryptographic construction is in the class RO2.
The implication from Theorems 1 and 2 is that no matter how
the adversary corrupts the ciphertext the probability that the
patterns are visible in some plaintext can be bounded if a
construction is in this class.

Our analysis encourages further study on cryptographic
constructions that are RO2. Some of these constructions are
quite practical and inexpensive to build. For example, ref-
erence [3] introduces a construction called IVP, which is a
three level confusion diffusion network that supports 32-bit
implicit integrity associated with the 4 among 32 16-bit word
equality pattern, the life time value of B = 232 queries
and the indistinguishability parameter ε = 2.651 bits. This
construction successfully defends against on-line corruption
and replay attacks on content which is 512 bits long. The
overhead of the construction over a standard four block mode
of AES (e.g., AES-XTS) is only two additional AES rounds
in the data path, which can be minimal.
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