
A Deep ConvNet-Based Countermeasure to

Mitigate Link Flooding Attacks Using

Software-Defined Networks

Junchi Xing∗, Jingjing Cai†, Boyang Zhou‡ and Chunming Wu∗

∗College of Computer Science and Technology, Zhejiang University
†Polytechnic Institute of Zhejiang University

‡Zhejiang Lab

Email: ∗{jcxing, wuchunming}@zju.edu.cn, {†netbeanscai, ‡zby zju}@163.com

Abstract—Recently, link flooding attacks (LFA) have been
observed as a serious threat for cutting off the Internet connec-
tivity through congesting critical links. A LFA typically utilizes
legitimate and low-rate flows, which makes it extremely hard to
be detected and, subsequently, to be mitigated. In this paper,
we present LF-Shield, that is a deep convolutional neural net-
work (ConvNet) based countermeasure to accurately detect and
efficiently mitigate LFAs using software-defined network (SDN)
paradigm. LF-Shield can identify malicious bots that launch LFA
flows by extracting end-hosts’ traffic features and afterwards,
classifying the type of end-hosts based on deep ConvNet. Then,
LF-Shield mitigates LFAs without affecting legitimate end-hosts
through blocking the classified malicious bots and limiting the
bandwidths of inactive or newly-accessed end-hosts. A LF-Shield
prototype is implemented for evaluating its performance by
several experiments. The experimental results demonstrate that
LF-Shield can identify malicious bots with an accuracy of 96.4%
and mitigate LFAs with the 93.1% reduction in link degradation
ratio, with negligible impact on legitimate end-hosts.

Index Terms—Software-defined network, link flooding attack,
deep convolutional neural network.

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks pose a severe

threat to the availability of network infrastructures and applica-

tions. In recent years, as a highly sophisticated class of DDoS

attack, link flooding attack (LFA) has been emerged [1]–[3].

Unlike traditional DDoS attacks that flood the end targets,

LFA aims at depleting the bandwidth of critical links so as

to disconnect a targeted area [4]. To achieve this, the attacker

employs a swarm of bots to send flooding traffic to the bots or

decoy servers in the targeted area through critical links. LFA is

destructive but is difficult to be detected and mitigated because

the attacker typically uses legitimate, low-rate flows with real

IP addresses [5], which are indistinguishable from legitimate

flows by traditional defense mechanisms (e.g., firewalls or

IDSes) deployed at the network perimeter [6].

This work is supported by the National Key Research and Develop-
ment Program of China (2016YFB0800102, 2017YFB0803205), the Key
Research and Development Program of Zhejiang Province (2017C01064,
2018C01088, 2018C03052), and the Major Scientific Project of Zhe-
jiang Lab (2018FD0ZX01). Corresponding Author: Chunming Wu. wuchun-
ming@zju.edu.cn)

Currently, a promising networking paradigm, software-

defined networking (SDN) [7] monitors and programs the data

plane at a centralized controller, offering potential to defend

LFA. It is because that SDN is able to sample the statistics

of all the network flows in a holistic and effective manner

[8]. Moreover, SDN simplifies the policy enforcement for

LFA mitigation. Existing SDN-based solutions [5], [6], [9]–

[12] realize the LFA mitigation by re-routing the traffic that

congests the links. Nevertheless, the major problem with these

solutions is that the end-to-end latency of the legitimate flows

in the re-routed traffic will be increased. The root cause is

that they fail to identify LFA flows from legitimate ones due

to the indistinguishability of individual LFA flows [9], [10]

and therefore detour the legitimate flows as well.

Challenges. Therefore, to exploit the benefits of SDN to

defend against LFAs, we face the following two challenges to

overcome the problem above:

• How to accurately distinguish LFA flows from legitimate

ones with a holistic visibility across the network?

• Based on the distinguishing results, how to efficiently

mitigate LFA without affecting legitimate flows?

Our work. In this paper, we propose a deep convolutional

neural network (ConvNet) based countermeasure to detect and

mitigate LFA in SDN called LF-Shield. Firstly, the statistics

of flows that congest links are periodically collected using

SDN. Then, we group these flows according to their source

IP addresses (end-host addresses), and turn this problem as an

end-host type classification problem. To solve this problem, we

extract six features of each end-host traffic using the related

flow statistics, and classify the end-host type using a deep

ConvNet. As for the LFA mitigation, we firstly focus on reduc-

ing the false positive rate of the end-host type classification.

To approach this, we do not classify the inactive or newly-

accessed end-hosts with insufficient number of flows (leading

to inaccuracy in their traffic feature extraction), but adopt

a temporary max-min fair bandwidth-limiting mechanism to

throttle their bandwidths. Moreover, we use the programma-

bility of SDN to block the classified malicious bots and make

the traffic of classified legitimate end-hosts pass through the

331

links with congestion relieved.

We implement a prototype of LF-Shield as an application

running on the RYU controller [13]. And we perform several

experiments for evaluating the performance of our prototype

implementation. The experimental results show that malicious

bots that send flooding traffic in a LFA is able to be accurately

distinguished and LFA can be efficiently mitigated without

affecting legitimate end-hosts.

Contributions. This paper makes the following contribu-

tions:

• We propose a novel framework with four major modules

(network information collector, link congestion monitor,

end-host type classifier, and link flooding mitigator) to

detect and mitigate LLA using SDN. (Section III)

• We introduce an accurate LFA flows distinguishing

method based on deep ConvNet involving the following

processes: grouping of flows to be distinguished, end-

host traffic feature extraction, and binary classification.

(Section IV.A)

• We design a max-min fair bandwidth-limiting mechanism

to throttle the bandwidths of the inactive or newly-

accessed end-hosts, which relieves the congestion of links

and reduces the false positive rate of bots blocking.

(Section IV.B)

• We implement a prototype of our proposed framework.

Based on the prototype, the experiments demonstrates

that: the accuracy for classification of malicious bots

is 96.4%, the feasibility of congested link mitigation is

reflected by the fact that 93.1% of the link degradation

ratio is reduced, with negligible impact on legitimate end-

hosts is caused. (Section V)

Organization. Section II presents background and prelim-

inaries. Section III introduces the proposed LF-Shield in

architecture. Section IV presents the design of LF-Shield in

detail. Section V evaluates the performance of LF-Shield.

Section VI discusses on related work. Section VII conclude

the paper.

II. BACKGROUND AND PRELIMINARIES

A. Link Flooding Attack

Link flooding attack (LFA) [1]–[3] refers to a new type

of DDoS attack, as shown in the bottom half of Fig. 2. The

attacker has a crowd of bots (or botnet) at his disposal, and

seeks to attack a certain area, called the targeted area. Its

objective is to cut off Internet connectivity to this area. To this

end, the bots are made to send legitimate, low-rate traffic flows

towards the decoy servers [1] or bots [2] in the targeted area.

The traffic flows pass through the critical links that connect

these servers. Hence the targeted links will be congested by

the traffic flows.

The most remarkable characteristic of this type of attack is

that it uses legitimate and low-rate traffic flows to achieve its

devastating impact thus making the attack particularly hard to

be detected and mitigated [5], [9].

B. Software-defined Networking

Software-defined Networking (SDN) [7] is a popular net-

work paradigm consisting of a programmable controller and

several belonging switches, where the controller communicates

with the switches using southbound protocols (e.g., OpenFlow

[14]) in order to collect network statistics in central and

effective manner and program the forwarding rules for defining

network policies. There are clear benefits to be gained from the

SDN architecture in terms of innovation in network security

[8]. And currently, some research has been carried out to

improve network security based on the deployment of SDN,

such as [15]–[17]. Similarly, SDN can be used to tackle the

LFA [5], [6], [9]–[12], [18], [19].

C. Deep ConvNet

Deep ConvNet (deep convolutional neural network) refers

to a convolutional neural network with multiple hidden layers

[20]. The input layer receives an input feature set of data to be

processed, and output layer generates the classification results

(viz., Fig. 1). Due to the powerful capacity of feature abstrac-

Input Layer

Hidden Layer Hidden Layer

Output Layer

Fig. 1. A deep ConvNet architecture.

tion and learning, it is hopeful to integrate the intelligence

into attack identification to achieve high accuracy [21], [22].

Therefore, this technology opens a new door to identify LFA

flows.

III. ARCHITECTURE

In this section, we briefly introduce the architecture of the

proposed LF-Shield (viz., Fig. 2). LF-Shield aims to detect

and mitigate LFA flows at per-end-host granularity and is

composed of four major modules:

Network Information Collector module is used for period-

ically collecting current flow statistics from the SDN switches

through the OpenFlow [14] protocol, which is the prerequisite

of LF-Shield. Subsequently, it sends the flow statistics to the

next module for further detection. Moreover, it clusters the

flows according to their source IP addresses (we regard each

source IP address as an end-host) and stores them into a End-

host Statistics Database as end-host traffic history information.

Link Congestion Monitor module is responsible for

rapidly locating the congested links. Specifically, it accumu-

lates the rates of flows that pass through each link based on the

received flow statistics. If the accumulation reaches or exceeds

the predefined bandwidth of a link, this means that the link is

congested. Then this module triggers the next module.

332

SDN Switch SDN Switch

SDN Controller

Bots

Decoy Servers

End-Host Statistics

Database

Link Flooding

Attack (LFA)

… …

Detection Mitigation

Flow Statistics Collecting Installing Rules for

Mitigation

End-Host Type

Classifier3

Link Flooding

Mitigator4

Network information

Collector1

Link Congestion

Monitor2

Targeted Area

Fig. 2. Architecture of LF-Shield and an example of link flooding attacks.

End-host Type Classifier module is devoted to distinguish-

ing the malicious bots among all the end-hosts that congest

the link using deep ConvNet, which is the core module of LF-

Shield. Specifically, it extracts six features of the end-hosts’

traffic according to the end-host traffic history information

from the End-host Statistics Database, and then performs end-

host type classification using a pre-trained deep ConvNet. For

accuracy, it only processes end-hosts with sufficient number

of flows (active end-hosts), and the end-hosts with insufficient

number of flows (inactive or newly-accessed end-hosts) will

be processed by the following module.

Link Flooding Mitigator module is used for implementing

the mitigation function of LF-Shield. First, it blocks all the

malicious bots’ traffic through installing rules into the adjacent

SDN switches of the malicious bots. Second, it adopts a

temporary max-min fair bandwidth-limiting mechanism to

throttle the bandwidths of inactive or newly-accessed end-

hosts through installing rules into the adjacent SDN switches

of the congested link.

The first three modules and the last module will be detailly

described in Section IV.A and IV.B, respectively.

IV. DESIGN

In this section, we present the design of LF-Shield in

detail. We look forward to address the challenges regarding (1)

accurate flow distinguishing and (2) efficient LFA mitigation

without affecting legitimate flows.

A. Flow Distinguishing Based on Deep ConvNet

Given the flows that are congesting a link, our goal is

to distinguish the malicious flows from the legitimate. To

this end, our idea is to classify the end-hosts to which the

flows belong by leveraging the deep ConvNet. Our flow

distinguishing process has three steps:

1) Grouping of Flows by End-host. The online flows statis-

tics are collected by Network Information Collector module.

Flows from each end-host are separated by source IP address,

and the flows statistics can be grouped as end-host statistics,

which will be stored in the End-host Statistics Database.

An end-host’s properties include: destination IP addresses

connected, number of flows sent, duration of flows, number

of packets sent, and number of bytes sent. For the accuracy

of the distinguishing, we hope to only classify the end-hosts

with sufficient number of flows. Thus we set a threshold

to limit end-hosts with insufficient number of flows for the

distinguishing. And such end-hosts will be directly processed

by the LFA mitigation process until their flow numbers reach

the threshold.

2) Feature Extraction. We calculate the mean value and

standard deviation of the following properties of an end-host,

and extract them to construct a feature set. Moreover, we

analyze why they are relevant to distinguishing malicious and

legitimate end-hosts.

• Cardinality of Destination IP Address (CDIP): This indi-

cates the count of distinct destination IP addresses within

a 10-second time window. In a LFA, each flow from a bot

is low-rate, thus it need to visit numerous decoy servers

for achieve its goal, which increases its cardinality [5].

• Novelty of Destination IP Address (NDIP): This means

the change in the number of distinct destination IP

addresses between time windows; new destinations might

suggest that the end-host is launching a LFA because the

bots often need to find more decoy servers.

• Duration of Flow (DF): Legitimate traffic has limited

burstiness. In contrast, to flood the links, the bots should

make their attack persistent [5]. Hence, each malicious

flow seeks to live as long as possible.

• Inter-flow Interval (II): Similarly, short inter-flow interval

is needed to sustain the attack.

• Packet Rate (PR): Bots aims at sending packet at low rate

to escape statistic-based detection [1].

• Packet Size (PS): The distribution of packet sizes differs

significantly between malicious and legitimate flows.

Because the bots have the objective to escape per-packet

detection and to save resources, but the legitimate end-

hosts do not.

3) Binary Classification. The end-host traffic features ex-

tracted above are inputted into a deep ConvNet that will output

binary labels to indicate whether an end-host is malicious or

legitimate.

For time saving, the deep ConvNet is trained offline in

advance. In fact, the deep ConvNet learns by measuring the

loss function to quantify the prediction deviates from the actual

values. The objective of the deep ConvNet is to learn in a way

such that the loss function is minimized. The commonly-used

Categorical-Cross Entropy (CE) function [22] is used as our

333

Algorithm 1: Max-min Fair Bandwidth Limiting

Input: Upper bandwidth limit of the congested link:

BU ; Total bandwidth of all legitimate end-hosts:

BL; Bandwidths of inactive or newly-accessed

end-hosts before the limiting: b1, b2, ..., bN .

Output: Bandwidths allocated to each end-host:

b
′

1
, b

′

2
, ..., b

′

N
.

1 BA ← BU −BL; /* Compute the available bandwidth.*/

2 for i← 1, N do

3 b
′

i ←
BA

N
; /* Averagely allocate the available

bandwidth to the end-hosts initially.*/

4 Allocation is finishedi ← False;

5 end

6 for i← 1, N do

7 if b
′

i
> bi then

8 Allocation is finishedi ← True;

9 Averagely allocate b
′

i
− bi to all the end-hosts

whose Allocation is finished flag is False;

10 b
′

i
← bi;

11 end

12 end

loss function, which can be expressed as follows:

CE = −

C∑

i

tilog(si), (1)

where ti and si are the actual values and the predictive scores

of deep ConvNet for each class i in C.

Moreover, we will introduce the datasets that we use for

this offline training and the training results in §V.

B. LFA Mitigation

In order to mitigate LFAs without affecting the legitimate

end-hosts, we introduce two types of LFA mitigation mecha-

nisms for different end-hosts.

1) Malicious bot Blocking. We directly block the malicious

bots obtained by the deep ConvNet aforementioned with an

adjustable blocking span. To achieve this, OpenFlow rules

matching the source IP addresses of the malicious bots with

a DROP instruction will be installed into the adjacent SDN

switches of the malicious bots. And the blocking span lies in

the lifespan of the rules.

2) Inactive or Newly-accessed End-host Bandwidth-

limiting. We use a bandwidth-limiting mechanism to throt-

tle these end-hosts with insufficient number of flows. Such

bandwidth-limiting can be implemented by the Meter Table

component of SDN switches, which is defined by the Open-

Flow protocol.

However, it is necessary to determine the limited bandwidth

allocated to each end-host. For this purpose, we adopt a max-

min fair bandwidth-limiting algorithm (viz. Algorithm 1) [23],

so as to prevent malicious bots from obtaining more bandwidth

resources than other legitimate end-hosts.

Then, the rules with bandwidth-limiting instruction in Meter

Table will be installed into the adjacent SDN switches of the

congested link.

V. EVALUATION

In this section, we perform several experiments to evaluate

the performance of LF-Shield.

Implementation. We implement a LF-Shield prototype,

including the four modules aforementioned. All of them are

implemented as applications on the RYU controller [13] in

Python. In particular, the deep ConvNet in the End-host Type

Classifier module is constructed using the Keras library [24].

And we use MySQL [25] as the End-host Statistics Database

linked to our modules. Moreover, the time scale of the Network

Information Collector module gathering flow statistics is set

to 2 seconds, and the minimum flow number threshold to

determine whether an end-host will be processed by the End-

host Type Classifier is set to 100.

Dataset. We offline train the deep ConvNet in the End-host

Type Classifier module based on the dataset as follows. Traffic

from legitimate end-host: The CTU-13 [26] is a well-known

public benchmark dataset for botnet research. Considering

that it includes no LFA flows, we only use its legitimate

flows and extract more than 7,000 samples of legitimate end-

host’s feature set, which are labeled to negative. Traffic from

malicious bot launching LFA: Because LFA has no public data

set until now [9], we simulate LFA based on paper [1] to build

this dataset. Specifically, we aim to flood targeted links whose

bandwidth increasing from 10 Mbps to 500 Mbps with a step

of 10 Mbps. And we use bots to send flows (at a 4 Kbps per-

flow rate) to a varying number of decoy servers (increasing

from 20 to 100 with a step of 2). As a result, 1,960 samples

of malicious bot’s feature set are extracted, which are labeled

to positive.

Experiment setup. For our experiments, we run our proto-

type and experiments on a computer equipped with Intel 4-core

Xeon E5-2609 v2 2.5GHz processor and 16GB of memory.

A. Accuracy: Malicious Bot Classification

To evaluate the accuracy of our prototype, we split up

the dataset into training set and test set according to the

proportion of 90%/10%, 80%/20%, and 70%/30%, feed the

the deep ConvNet with the training sets, and use the test sets

to examine it. The evaluation metrics mainly focus on (a) end-

host classification rate to indicate the ratio of the end-hosts

that are correctly classified and (b) false-positive rate meaning

the fraction of legitimate end-hosts classified to be malicious

among the total amount of legitimate end-hosts. In addition,

we simultaneously measure the effect of each feature in the

feature set by feeding the deep ConvNet with a certain feature

discarded.

Fig. 3 reports the accuracy of our prototype. When 90%

data are used for training with the whole feature set, the

end-host classification rate can reach 96.4% while the false-

positive rate drops under 1.8%. Moreover, we can get that the

accuracy will be reduced when training without the Cardinality

334

70%/30% 80%/20% 90%/10%
Split Ratios

82

84

86

88

90

92

94

96

En
d-
Ho

st
 C
la
ss
ifi
ca

tio
n
Ra

te
 (%

) (a)

Whole Feature Set
Without CDIP

Without NDIP
Without DF

Without II
Without PR

Without PS

70%/30% 80%/20% 90%/10%
Split Ratios

2

3

4

5

6

7

8

9

Fa
lse

-p
os
iti
ve
 R
at
e
(%

)

(b)

Fig. 3. Accuracy measure of LF-Shield including (a) end-host classification
rate and (b) false-positive rate.

of Destination IP Address (CDIP) feature. Thus CDIP seems

to be the dominated feature that influences the accuracy.

B. Feasibility: Relieving Congestion on Congested Link

LFA congests a link and consequently cuts the legitimate

flows passing through it. We use link degradation ratio [1] as

a metric, which is the fraction of legitimate flows cut by LFA

over the number of all legitimate flows passing through the

link, to indicate the effect of LFA. To validate the feasibility

of LF-Shield in defending LFA, we aim to show that LF-

Shield can effectively reduce the link degradation ratio of a

congested link. To this end, we use Mininet [27] to generate

a software-based network with OpenFlow switches (Open

vSwitch kernel switches) and hosts, which is under control

of a RYU controller with our LF-Shield prototype. Then, we

use the different number of hosts as bots and decoy servers to

perform LFAs on a link with bandwidth uniformly distributed

in [100, 500] Mbps. Also, we use 50 hosts as legitimate end-

hosts sending flows according to the Traffic from legitimate

end-host dataset aforementioned. The flows sent by the hosts

are generated by the Scapy [28] tool. Moreover, the bots and

decoy severs are deployed like Fig. 2, and the legitimate end-

hosts are deployed at the bots side.

100 150 200 250 300 350 400 450 500
Bandwidth of the Congested Link (Mbps)

0

20

40

60

80

100

Lin
k D

eg
ra
da
tio

n
Ra

tio
 (%

)

Without LF-Shield
With LF-Shield

Fig. 4. Link degradation ratio of a congested link with and without LF-Shield.

Fig. 4 reports the feasibility of our prototype. It illustrates

the link degradation ratio of a congested link without using

any defense technology and using our prototype. We can get

that the link degradation ratio is averagely reduced by 93.1%

after using our prototype.

C. Impact on Legitimate End-hosts: Round-trip Time of Re-

quest

To evaluate the impact introduced by LF-Shield on legiti-

mate end-hosts, we use the same experiment environment as

before but with a targeted link whose bandwidth is 200 Mbps.

And we investigate the change in round-trip time (RTT) of

the requests during the mitigation. To this end, we employ

two hosts to be a web server and a client using the webpy

library [29]. And this client sends a http request to the server

once per second, through a link flooded by bots. For each

request, we record the timestamps when it was sent (Tstart)

and when the corresponding response was received (Tend), and

RTT=Tend − Tstart.

14.0

14.5

15.0

Requests
sent

LFA
launched

LF-Shield triggered
& bandwidth limited

LFA mitigated

0 2 4 6 8 100.0

0.5

1.0

1.5

2.0 Requests
sent

LFA
launched

LF-Shield triggered
& bandwidth limited

LFA mitigated

Time (s)

RT
T
(m

s)

Inf

Fig. 5. RTT of requests sent by a legitimate end-host every 1 seconds, passing
a link under LFA, with LF-Shield.

Fig. 5 reports the RTT of the requests. From t = 1s to

t = 3s, we can observe that the RTT stays around 0.7 ms,

which can be regarded as the baseline of the normal RTT. At

t = 4s, the bots begin launching LFA, thus the requests can

not be responded, reflected by the infinite RTT in this figure.

At t = 6s, the RTT falls back to an acceptable range and is

slightly more than the normal. It is because that our prototype

has detected the attack and blocked the bots, and starts to limit

the bandwidth of the client. From t = 7s, the RTT backs to

normal. It is because that the legitimate end-host has reached a

sufficient number of flows and is classified as legitimate by our

prototype, thus without any bandwidth limiting. In summary,

LF-Shield incurs a negligible impact on the client during its

mitigation.

VI. RELATED WORK

In this section, we discuss existing works on detecting and

preventing LFAs that can benefit from SDN, which can be

generally classified into reactive and proactive approaches.

Reactive approaches. Woodpecker [9], [10] presents a

scheme to defense against LFA based on the incrementally

deployed SDN and uses the centralized traffic engineering to

make the traffic balanced and eliminate the congested links.

SPIFFY [5] presents a new traffic engineering technique based

335

on SDN whereby one can virtually increase the bandwidth

by routing around the congested links. A SDN-based moving

target defense mechanism proposed in [11] leverages traffic

engineering dynamically to reroute traffic on the suspected tar-

get links as long as it is congested. LFADefender [6] presents

a multiple optional paths rerouting method to temporarily

mitigate links congestion caused by LFAs. The approach

introduced in [12] uses online traffic engineering both to detect

bots and to balance the load. Unlike the above works, our

approach directly detects the traffic congesting the links and

accordingly mitigates the attacks, instead of re-routing the

traffic on the link which might incur latency to legitimate

flows.

Proactive approaches. HoneyNet [18] uses SDN to create

a virtual network topology and exposes the fake topology to

attackers, so as to make it difficult to locate the target links to

flood. Linkbait [19] is an active link obfuscation mechanism by

rerouting probing flows to obfuscate links, so that target links

are hidden from adversaries and some bait links are misjudged

as target links by adversaries in a SDN. These approaches can

be orthogonal to our approach in LFA defending.

VII. CONCLUSION

Link flooding attacks targeting at the critical links can cause

significant harm like link congestion and targeted network area

disconnection. In this paper, we presented LF-Shield, which is

a deep ConvNet-based countermeasure to detect and mitigate

LFAs in SDN. LF-Shield consists of four main modules, that

are used for collecting flow statistics, detecting congested

links, distinguishing malicious bots based on deep ConvNet,

and mitigating LFA, respectively. We implemented a LF-

Shield prototype, and thoroughly evaluated its performance.

Our experiment results demonstrated that LF-Shield can detect

LFAs with a high accuracy and mitigate LFAs with negligible

impact on legitimate end-hosts.

REFERENCES

[1] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley,

CA, USA, May 19-22, 2013, 2013, pp. 127–141. [Online]. Available:
https://doi.org/10.1109/SP.2013.19

[2] A. Studer and A. Perrig, “The coremelt attack,” in 2009, 14th European

Symposium on Research in Computer Security, 2009, pp. 37–52.
[Online]. Available: https://doi.org/10.1007/978-3-642-04444-1 3

[3] P. Bright. Can a ddos break the internet? sure just not all of it. [Online].
Available: https://arstechnica.com/information-technology/2013/04/can-
a-ddos-break-the-internet-sure-just-not-all-of-it/

[4] C. Liaskos, V. Kotronis, and X. A. Dimitropoulos, “A novel
framework for modeling and mitigating distributed link flooding
attacks,” in 35th Annual IEEE International Conference on Computer
Communications, INFOCOM, 2016, pp. 1–9. [Online]. Available:
https://doi.org/10.1109/INFOCOM.2016.7524507

[5] M. S. Kang, V. D. Gligor, and V. Sekar, “SPIFFY:
inducing cost-detectability tradeoffs for persistent link-flooding
attacks,” in 23rd Annual Network and Distributed Sys-

tem Security Symposium, NDSS, 2016. [Online]. Available:
https://www.comp.nus.edu.sg/ kangms/papers/spiffy.pdf

[6] J. Wang, R. Wen, J. Li, F. Yan, B. Zhao, and F. Yu, “Detecting and
mitigating target link-flooding attacks using sdn,” IEEE Transactions

on Dependable and Secure Computing, 2018. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/TDSC.2018.2822275

[7] D. Kreutz, F. M. V. Ramos, P. J. E. Verı́ssimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined
networking: A comprehensive survey,” Proceedings of the

IEEE, vol. 103, no. 1, pp. 14–76, 2015. [Online]. Available:
https://doi.org/10.1109/JPROC.2014.2371999

[8] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security
in software defined networks,” IEEE Communications Surveys and

Tutorials, vol. 18, no. 1, pp. 623–654, 2016. [Online]. Available:
https://doi.org/10.1109/COMST.2015.2453114

[9] L. Wang, Q. Li, Y. Jiang, X. Jia, and J. Wu, “Woodpecker:
Detecting and mitigating link-flooding attacks via SDN,” Computer

Networks, vol. 147, pp. 1–13, 2018. [Online]. Available:
https://doi.org/10.1016/j.comnet.2018.09.021

[10] L. Wang, Q. Li, Y. Jiang, and J. Wu, “Towards mitigating
link flooding attack via incremental SDN deployment,” in IEEE

Symposium on Computers and Communication, ISCC 2016, Messina,
Italy, June 27-30, 2016, 2016, pp. 397–402. [Online]. Available:
https://doi.org/10.1109/ISCC.2016.7543772

[11] A. Aydeger, N. Saputro, K. Akkaya, and M. Rahman, “Mitigating
crossfire attacks using sdn-based moving target defense,” in 41st IEEE
Conference on Local Computer Networks, LCN 2016, Dubai, United

Arab Emirates, November 7-10, 2016, 2016, pp. 627–630. [Online].
Available: https://doi.org/10.1109/LCN.2016.108

[12] D. Gkounis, V. Kotronis, and X. A. Dimitropoulos, “Towards defeating
the crossfire attack using SDN,” CoRR, vol. abs/1412.2013, 2014.
[Online]. Available: http://arxiv.org/abs/1412.2013

[13] “Ryu.” [Online]. Available: https://osrg.github.io/ryu/
[14] “Openflow switch specification.” [On-

line]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[15] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei:
Flexible and elastic ddos defense,” in 24th USENIX Security

Symposium, USENIX Security 15, Washington, D.C., USA,

August 12-14, 2015., 2015, pp. 817–832. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/fayaz

[16] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: detecting
security attacks in software-defined networks,” in 22nd Annual Network
and Distributed System Security Symposium, NDSS, 2015. [Online].
Available: https://www.ndss-symposium.org/ndss2015/sphinx-detecting-
security-attacks-software-defined-networks

[17] S. Gao, Z. Peng, B. Xiao, A. Hu, and K. Ren, “Flooddefender:
Protecting data and control plane resources under sdn-aimed dos
attacks,” in 2017 IEEE Conference on Computer Communications,

INFOCOM 2017, Atlanta, GA, USA, May 1-4, 2017, 2017, pp. 1–9.
[Online]. Available: https://doi.org/10.1109/INFOCOM.2017.8057009

[18] J. Kim and S. Shin, “Software-defined honeynet: Towards mitigating
link flooding attacks,” in 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops, DSN

Workshops 2017, Denver, CO, USA, June 26-29, 2017, 2017, pp.
99–100. [Online]. Available: https://doi.org/10.1109/DSN-W.2017.10

[19] W. Qian, X. Feng, Z. Man, Z. Wang, L. Qi, and
Z. Li, “Linkbait: Active link obfuscation to thwart link-flooding
attacks,” CoRR, vol. abs/1703.09521, 2017. [Online]. Available:
https://arxiv.org/abs/1703.09521

[20] M. A. Nielsen. Neural networks and deep learning. [Online]. Available:
http://neuralnetworksanddeeplearning.com/

[21] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection:
A survey,” CoRR, vol. abs/1901.03407, 2019. [Online]. Available:
http://arxiv.org/abs/1901.03407

[22] Z. Chen, W. Zhang, Z. Xie, X. Xu, and D. Chen, “Recurrent
neural networks for automatic replay spoofing attack detection,”
in IEEE International Conference on Acoustics, Speech and
Signal Processing, 2018, pp. 2052–2056. [Online]. Available:
https://doi.org/10.1109/ICASSP.2018.8462644

[23] “Rate adaptation, congestion control and fairness: A tutorial.” [Online].
Available: http://ica1www.epfl.ch/PS files/LEB3132.pdf

[24] F. Chollet. Keras. [Online]. Available: https://github.com/fchollet/keras/
[25] Mysql. [Online]. Available: https://www.mysql.com/
[26] Ctu-13-dataset. [Online]. Available:

http://neuralnetworksanddeeplearning.com/
[27] Mininet. [Online]. Available: http://mininet.org/
[28] “Scapy.” [Online]. Available: https://scapy.net/
[29] webpy. [Online]. Available: https://github.com/webpy/webpy/

336

